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FOREWORD 
\1\ 
The Unified Facilities Criteria (UFC) system is prescribed by MIL-STD 3007 and provides 
planning, design, construction, sustainment, restoration, and modernization criteria, and applies 
to the Military Departments, the Defense Agencies, and the DoD Field Activities in accordance 
with USD(AT&L) Memorandum dated 29 May 2002.  UFC will be used for all DoD projects and 
work for other customers where appropriate.  All construction outside of the United States is 
also governed by Status of forces Agreements (SOFA), Host Nation Funded Construction 
Agreements (HNFA), and in some instances, Bilateral Infrastructure Agreements (BIA.)  
Therefore, the acquisition team must ensure compliance with the more stringent of the UFC, the 
SOFA, the HNFA, and the BIA, as applicable.  
 
UFC are living documents and will be periodically reviewed, updated, and made available to 
users as part of the Services’ responsibility for providing technical criteria for military 
construction.  Headquarters, U.S. Army Corps of Engineers (HQUSACE), Naval Facilities 
Engineering Command (NAVFAC), and Air Force Civil Engineer Support Agency (AFCESA) are 
responsible for administration of the UFC system.  Defense agencies should contact the 
preparing service for document interpretation and improvements.  Technical content of UFC is 
the responsibility of the cognizant DoD working group.  Recommended changes with supporting 
rationale should be sent to the respective service proponent office by the following electronic 
form:  Criteria Change Request (CCR).  The form is also accessible from the Internet sites listed 
below.  
 
UFC are effective upon issuance and are distributed only in electronic media from the following 
source: 
 
• Whole Building Design Guide web site http://dod.wbdg.org/.  
 
Hard copies of UFC printed from electronic media should be checked against the current 
electronic version prior to use to ensure that they are current.  
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FOREWORD

These technical instructions (TI) provide design and construction criteria and apply to all
U.S. Army Corps of Engineers (USACE) commands having military construction
responsibilities.  TI will be used for all Army projects and for projects executed for other
military services or work for other customers where appropriate.

TI are living documents and will be periodically reviewed, updated, and made available
to users as part of the HQUSACE responsibility for technical criteria and policy for new
military construction.  CEMP-ET is responsible for administration of the TI system;
technical content of TI is the responsibility of the HQUSACE element of the discipline
involved.  Recommended changes to TI, with rationale for the changes, should be sent
to HQUSACE, ATTN: CEMP-ET, 20 Massachusetts Ave., NW, Washington, D.C.
20314-1000.

TI are effective upon issuance.  TI are distributed only in electronic media, primarily
through the TECHINFO  http://www.hnd.usace.army.mil/techinfo/index.htm Internet site and the
Construction Criteria Base (CCB) http://www.ccb.org/ maintained by the National Institute of
Building Sciences at Internet site.  Hard copies of these instructions produced by the
user from the electronic media should be checked against the current electronic version
prior to use to assure that the latest instructions are used.

FOR THE COMMANDER:

Dwight A. Beranek, P.E.
Chief, Engineering and Construction Division
Directorate of Military Programs
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CHAPTER 1

INTRODUCTION

1.  PURPOSE AND SCOPE.  This document provides design guidance on the use of cold-formed steel
systems for both load-bearing (Chapter 2) and nonload-bearing (Chapter 4) applications.  Also, criteria
are provided to use load-bearing systems in shear wall (Chapter 3) applications.  The nonload-bearing
application guidance in Chapter 4 also includes provisions for the masonry wythe and moisture
protection of complete masonry veneer/steel stud curtain wall systems.

2.  APPLICABILITY.  These instructions are applicable to all elements responsible for the design of
military construction.  Exceptions to this criteria will require Corps of Engineers Headquarters (CEMP-
ET) approval.

3.  REFERENCES.  Appendix A contains a list of references used in these instructions.

4.  PARTNERING EFFORT.  This document is the result of partnering between industry and
Government with emphasis on Green Building Technology.  Designers should require materials,
products and innovative construction methods and techniques which are environmentally sensitive,
take advantage of recycling and conserve natural resources.  Funding for this effort came from the
Green Building Program.

5.  DESIGN CONCERNS UNIQUE TO COLD-FORMING.

a.  General.  The AISI Specification is applicable to sheet and strip steels with thicknesses of 6.35
mm (¼ in) or less, but steel plates and bars up to 25.4 mm (1 in) can successfully be used as structural
shapes.  Designers working with cold-formed steel products will account for several unique conditions
not normally found in AISC steel designs as outlined below:

• Effective section properties are based on the design stress of the loading condition being
analyzed,

• Lateral-torsional buckling is a special buckling condition unique to the cold-formed design of
compression members,

• Local buckling of section elements, and the lateral buckling of members is different than
typically found in AISC steel design,

• Connections can be assembled using welds, screws, or bolts.  Crimping is not allowed as
well as powder driven pins.  However, powder driven pins can be used to attach wall tracks
to concrete floors, foundations, and steel superstructures,

• A Deign Process for Load-bearing Cold-Formed Steel Systems Flowchart is shown as
Figure 1-1.

b.  Seismic Design  The seismic design guidance provided in Chapter 3 will only be used for
Performance Objective 1A (Life Safety Performance Objective Level defined in TI 809-04) for all
seismic ground motion levels and enhanced Performance Objectives (2A, 2B and 3B) for Seismic
Design Categories A and B.  The definition of performance objectives and seismic design categories
are provided in TI 809-04, Seismic Design for Buildings.

Seismic design with cold-formed steel has two inherent problems with the material itself.  The first is
light gauge thickness of the cold-formed steel materials and the second is the material strength
variability.  The objective of seismic design guidance is to ensure ductile building system performance
in the large seismic event and elastic response in the small event or wind loading.  Ductile building
performance
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requires that selected ductile components yield, but continue to carry loads and absorb energy through
significant plastic response.  At the same time potentially brittle failure modes, such as column buckling
or connection failure must be prevented.  The design challenge for cold-formed steel is to ensure that
building components, and in particular shear panel components, be proportioned
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Figure 1-1: Design Process for Loadbearing Cold-Formed Steel Systems
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relative to each other and detailed to ensure the ductile response.  In this guidance, this is
accomplished by ensuring that the diagonal straps yield and respond plastically through significant
displacement, without risk of damage to brittle connections or column buckling.

Seismic design guidance is provided on three levels:

• Tabular data for prototype shear panels in terms of the maximum story shear and maximum
and minimum gravity load.  These terms are defined in Chapter 3 and the shear panel
configurations and data are provided in Appendix E.

• Detailed guidance for shear loads using shear panels with diagonal straps as primary lateral
load resisting element.  This guidance is provided in Chapter 3, with background guidance
taken from other sources in Appendix C and an example problem illustrating the guidance in
Appendix D.  The spreadsheet, http://owww.cecer.army.mil/techreports/wilcfsxl.post.pdf
program used in the example problem is available as a design tool for shear panel design.

• A test procedure and the acceptance criteria for other shear panel configurations is provided in
Appendix F.

6.  USES OF COLD-FORMED STEEL.

a.  General.  Cold-formed steel systems have been used in industry and within the government
for many decades.  The primary areas of usage include: standing seam roof systems, doors, roof and
floor joists, decking and floor systems, ventilation and ceiling systems, interior wall partitions and
exterior fascia, metal buildings, lighting poles, guardrail, and corrugated steel pipe.  These TI provide
guidance necessary for designers to develop loadbearing steel systems.

b.  Steel Framing Systems.  These systems can be used in: wall, floor, and roof trusses of low
rise offices, single family homes, and multi-family housing structures.  Cold-formed systems should be
galvanized for the local environmental conditions, and be pre-punched for routing utility services
through walls.  A rubber or plastic grommet must be provided in each pre-punched hole that utilities are
passing through to prevent corrosion between dissimilar metals in the wall stud cavity.

7.  COLD-FORMED SUPPLIERS.  Cold-formed manufacturers perform the following services for the
commercial customers: provide framing details, develop design information on the structural capacity
of their members, help specify the job’s materials, and deliver precut materials.  Government designers
should specify the design properties of each structural member; studs, track, heads, jambs, jack studs,
etc.   These properties include member depth, width and design thickness for each section.

8.  RESPONSIBILITIES

a.  Designers.  Cold-formed steel framing involves the use of engineered products outlined in an
overall engineered system.  Cold-formed steel framing is ideally suited for structural applications such
as curtain wall framing, load-bearing wall framing, floor framing, rigid frames, trusses, and roof rafter
framing.

(1) Selecting Member Strength.  Designers are responsible for specifying which products are
to be used as well as which standards the products must meet.  The products must meet
all of the design requirements which normal engineering practice requires.  Axial load
capacity of compression members, flexure, torsion, shear, and web crippling in beams,
and combined stresses in columns, etc. must be examined.

• Designers are to specify all materials by nominal uncoated thickness, effective
section properties, and member loads.  Loads should include moment and shear
diagrams, and axial load with eccentricity.

• All connections (member-to-member and member-to-structure) are to be examined
carefully taking into account all relevant physical strengths and properties as well as
proper transfer of all loads to the supporting structure.

http://owww.cecer.army.mil/techreports/wilcfsxl.post.pdf
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• Design selected walls to provide frame stability and lateral load resistance.
• Engineered methods such as diaphragm shear walls or diagonal steel strapping are

used to provide frame stability and transfer lateral loads through the structure into the
foundation.  Provide additional studs as required to resist the vertical component of
the loads from the diagonal bracing.

• Wall bridging is designed to provide resistance to minor axis bending and rotation of
studs.

• Diaphragm rated components can be substituted for bridging; however, they must be
installed prior to loading of the wall.  If components are installed on one side of the
wall only, then the flanges on the other side of the studs must be bridged with
suitable bridging.  Bridging can be removed or left in place when diaphragm rated
components are installed.

• Provide for structure movement as indicated and necessary by design or code
requirements.

(2)  Member Specification.  The primary specification for the design of the individual
components is the AISI Specification for the Design of Cold-Formed Steel Structural Members.  Other
considerations, which the designer specifies, include:

• Member or Stud size, spacing, and depth.
• Deflection criteria, maximum spacing, minimum gage, wind loads.
• Studs are spaced to suit the design requirements and limitations of collateral

materials.
• Allow for additional studs at panel intersections, corners, doors windows, control

joints, etc.

b.  Manufacturers.  Lightweight steel framing involves the use of engineered products in an
engineered system.  Manufacturers provide technical product information, including physical and
structural properties, and manufacturing standards that the designer can use to specify the appropriate
structural products.

• Samples.  Samples are representative pieces of all framing component parts and
accessories;

• Certification.  Certification is a statement from the manufacturer certifying that the
materials conform to the appropriate requirements as outlined in the contract documents;

c.  Contractor.  The Contractor is responsible for providing the finished structure in strict
compliance with the contract documents and cold-formed steel shop drawings.  Included in the
contractor’s responsibilities are the following:

• Shop Drawings of details and attachments to adjoining work.
• Drawings showing plans, elevations, sections, and details.
• shop coatings
• steel thickness
• size, location, spacing of fasteners for attaching framing to itself
• details of attachment to the structure
• accessories and their installation
• and critical installation procedures

d.  Contractor Quality Control.  The Contractors Quality Control (CQC) Manager inspects Corps
of Engineers projects.  This effort outlines the contractor’s inspection document requirements.  The
following Quality Assurance Documents are to be maintained by the CQC Manager:

• The manufacturer and product delivery dates,
• the contractor’s staff and qualifications,
• compliance to testing standards for members, erection tolerances, and fasteners,
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• submittal registers, erection drawings, production drawings,
• designer of record approvals, and CQC inspection reports,
• designer of record notes to the field on handling, storage, installation and special

inspections by design engineering staff during construction,
• designer of record limitations and permissible deviations,
• qualifications of field welders,
• process for getting designer of record approval for applying attachments to metal stud

systems,
• final inspection and approval of framing systems (this could be accomplished through

the local building code group).

9.  MATERIALS.  The marking standard used in the following material does not have a metric
equivalent.  Materials marked to the following standard are for field acceptance of the delivered
materials.  Designers are to use the nominal uncoated material thickness as shown on the drawings
and within the specification.

a.  Markings.  The Metal Lath / Steel Framing Association (ML/SFA), Metal Stud Manufacturers
Association (MSMA), the AISI Residential Advisory Group (RAG), and the Prescriptive Standard for
Steel Framing, accepted by the Council of American Building Officials (CABO), have adopted a
standard method of marking all cold-formed steel members.  The markings will be on the web of the
section and will be repeated throughout the length at a maximum of 1219 mm (48 inches) on center.
There is no defined size or method of marking, but the markings must be legible and easily read.  The
product marking will include the following information:

(1)  Manufacturer identification.  Manufacturer’s Name, Company Logo or emblem will be
displayed to clearly identify the product manufacturer.

(2)  Minimum delivered uncoated steel thickness.  Material thickness without coatings or
galvanizing is represented in mils of the decimal thickness value for example 0.84 mm (33 mil);

(3)  Protective coating designator.  The galvanizing coat designator will indicate the amount
level of protection being provided such as: G-40-EQ, G-60-EQ, or G-90-EQ, where EQ is an equivalent
protective coating to the designated galvanized coating.

(4)  Minimum yield strength.  Material strength in kips per square inch (ksi)

b.  Nomenclature.

(1)  Standard Nomenclature for Manufacturer’s Catalogs:

(a)  The first set of numbers will represent the depth of the section to two decimal places
without the use of a decimal point.

(b)  A Letter following the depth of the section will define the shape of the section per the
following:

“S” = CEE shaped Stud
“U” = Channel shaped Stud
“T” = Track
“F” = Furring Channel

(c)  The second set of numbers will represent the flange width to two decimal places
without the use of a decimal point.

(d) The last set of numbers will be the minimum delivered thickness in mils and be
preceded by a dash (-).
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Example: 362S162-33 = 92 mm (3-5/8”) CEE Stud with a 41 mm (l-5/8”) Flange – 0.84 mm (33 mils)
Thickness

(2) Standard Minimum Delivered Uncoated Metal Thicknesses are shown in Table 1-1:

Table 1-1: Standard Minimum Delivered Uncoated Metal Thickness
Nominal / Design Thickness Minimum / Delivered Thickness

Gage Soft Metric Decimal Soft Metric Decimal Mils
26 0.437 mm 0.0172” 0.414 mm 0.0163” 16
25 0.478 mm 0.0188” 0.455 mm 0.0179” 18
22 0.719 mm 0.0283” 0.686 mm 0.0270” 27
20 0.879 mm 0.0346” 0.836 mm 0.0329” 33
18 1.146 mm 0.0451” 1.087 mm 0.0428” 43
16 1.438 mm 0.0566” 1.367 mm 0.0538” 54
14 1.811 mm 0.0713” 1.720 mm 0.0677” 68
12 2.583 mm 0.1017” 2.454 mm 0.0966” 97
10 3.150 mm 0.1240” 2.997 mm 0.1180” 118

From ICBO: Acceptance Criteria for Steel Studs, Joists, and Tracks, AC46, April 1998.

(3) Standard Flange and Return Lips for CEE Studs:
0.46 mm & 0.69 mm (18 & 27 Mil) minimum thickness = 32 mm (1-1/4”) Flange with
4.8 mm (3/16”) Lip.
Any Thickness = 35 mm (1-3/8”) Flange with 9.5 mm (3/8”) Lip.
Any Thickness = 41 mm (1-5/8”) Flange with 13 mm (1/2”) Lip.
Any Thickness = 51 mm (2”) Flange with 16 mm (5/8”) Lip.
Any Thickness = 64 mm (2-1/2”) Flange with 16 mm (5/8”) Lip.

(4) Standard Track Flange Sizes:  25 mm (1”), 32 mm (1-1/4”), 38 mm (1-1/2”) and 51 mm
(2”)

(5) Standard “U” Channels: Web x Leg x Minimum Thickness
29 mm (3/4”) x 13 mm (l/2”) x 1.37 mm (54 Mil)
38 mm (1-1/2”) x 13 mm (1/2”) x 1.37 mm (54 Mil)
51 mm (2”) x 13 mm (1/2”) x 1.37 mm (54 Mil)

(6) Standard Hat Furring Channels: Depth x Minimum Thickness
22 mm (7/8”) x 0.46, 0.69,0.84, 1.09 mm (18, 27, 33, and 43 Mil)
38 mm (1-1/2”) x 0.46, 0.69,0.84, 1.09 mm (18, 27, 33, 43, and 54 Mil)

c.  Strain Hardening.

(1)  General.  The cold working of steel stresses it beyond its elastic limit and leaves a
residual strain.  After the cold working, the steel has an increased yield stress.  This process of  raising
the yield stress is known as cold working.  The amount of strain hardening is relative
to the amount of cold working.  In normal roll forming, the cold working is nominal, the steel remains
ductile and it makes a modest improvement in the allowable stress of the section.  Extensive cold
working of steel can cause it to loose its ductility and become brittle, but normally, this condition is not
associated with common roll formed products.

(2)  Cold Reducing and Rerolling of Steel.  Steel mills have the capability to cold reduce the
steel sheet to meet the specified thickness before shipment to the manufacturer.  Some manufacturers
can reroll the steel sheet to again reduce the sheet thickness.  Within the AISI Specification this is
known as Other Steel.  This practice is allowed by the AISI Specification if the rerolled steel meets the
ductility criteria of the AISI Section A3.3.  Therefore, the manufacturer is strain hardening the material.
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Depending on the degree of rerolling that occurs, the material will have a higher steel yield strength,
less ductility, and a more rounded stress-strain curve above the yield point of the steel than would be
seen in the virgin steel sheet materials.  Design guidance that is provided in chapter 3 recognizes this
material property variability.  Diagonal bracing materials are to be ASTM A653 steel without rerolling,
and will be a Category I submittal for approval by the designer of record.

d.  Damaged Materials.

(1)  General.  Steel framing materials can be rejected for the following reasons: physical
damage (dents, cuts, twists, buckles); corrosion; length; metal thickness; yield stress; protective coating
or forming.  Physical damage and corrosion are easily identified.  Length variations and forming
problems are relatively easy to identify with standard measuring devices.  The metal thickness must be
checked with a micrometer and one must know what the required thickness should be.  The yield
strength and protective coating can only be checked through testing.

(2)  Tolerances and Coatings.  The allowable physical tolerances and standard protective
coatings for steel framing products can be found in current ASTM Standards.  ASTM C-645 covers
tolerances and standard protective coatings for nonstructural partition framing and ASTM C-955 covers
the same information for structural framing.  The yield strength for structural framing is normally
specified in the project specifications or on the drawings.  Special protective coating requirements are
also specified in the project specifications.

e.  Fire Resistance Rating.

(1)  General.  Fire rating of assemblies denotes a length of time that a given assembly will
resist fire penetration under controlled laboratory conditions; Table 1-2 lists many Fire Rated
Assemblies.  These fire-rating tests are performed in accordance with the existing consensus standards
of ASTM or ANSI.  A fire rating is only valid for the tested assembly.  Although most materials cannot
be added or changed in a fire rated assembly, stronger steel framing sections can be used.  The
specified depth and gauge of steel framing in a tested assembly are considered minimums.  The fire
rating will still apply to the assembly when steel framing members that are deeper and/or heavier than
the specified members, are used.

(2)  Fire Tests.  There are numerous fire rated assemblies for interior walls, exterior walls,
floors, ceilings, and roofs, incorporating steel framing. Various laboratories throughout the country have
performed fire rating tests of loadbearing steel stud walls.  Currently, within the AISI Residential
Advisory Group (RAG), a task group has been assigned to compile a listing of all available fire rated
assemblies, using steel framing.  The following sources list many fire rated assemblies that can be
used if cold-formed design.

• Fire-Resistance Ratings of Load-Bearing Steel Stud Walls (AISI, Publication Z-4)
• Fire Design Manual (Gypsum Association)
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Table 1-2: Fire Rated Assemblies
The following table depicts various fire rated assemblies incorporating steel framing components.
Test Reference Fire Rating Type of Assembly Agency Components

FM 24676.4
FC 224

2 HR Floor/Ceiling FM 1975 -64 mm (2 ½”) concrete (note B)
-14 mm (9/16”) 0.36 mm (28 GA) deck and
mesh
-184 mm (7 ¼”) X 1.15 mm (18GA) joists,
610 mm (24”) OC
-2 layers 16 mm (5/8”) G.W.B. ceiling

FM 29135
FC 245

1 HR Floor/Ceiling FM 1977 -51 mm (2”) concrete
-41 mm (1 5/16”), 0.56 mm (24 GA) deck
-152 mm (6”) X 1.15 mm (18 GA) joists,
610 mm (24”) OC
-1 layer 13 mm (½”) G.W.B. ceiling

L 524 1 HR Floor/Ceiling UL 1988 -Min 184 mm (7 ¼”) X 1.15 mm (18 GA),
steel stud, 610 mm (24”) OC
-Use any of the floor systems indicated in
the UL test

P 511 1 HR Roof/Ceiling UL 1988 -Min 184 mm (7 ¼”) X 1.15 mm (18 GA),
Steel Joist, C Shape, 51 mm (2”) Flange
Minimum, 610 mm (24” OC)
-See test for roof/ceiling components

P 512 1 HR Roof/Ceiling UL 1988 -Min 184 mm (7 ¼”) X 1.15 mm (18 GA),
Steel Joist, C Shape, 610 mm (24”) OC
-See test for roof/ceiling components

U 418 ¾ HR Bearing Wall UL 1988 See test
U 418 1 HR Bearing Wall UL 1988 -2 layers 13 mm (½”) thick, G.W.B, one

side
-89 or 140 mm (3 ½” or 5 ½”) X 1.15 mm
(18 GA) steel stud, 610 mm (24”) OC
-See test for exterior component

U 418 2 HR Bearing Wall UL 1988 -3 layers 13 mm (½”) thick, G.W.B, one
side
-89 or 140 mm (3 ½” or 5 ½”) X 1.15 mm
(18 GA) steel stud, 610 mm (24”) OC
-See test for exterior component

U 425 ¾, 1 HR Bearing Wall Interior UL 1988 See test
U 425 1 ½ HR Bearing Wall Interior UL 1988 -2 layers 13 mm (½”) thick, G.W.B, each

side
-89 mm (3 ½”) X 0.87 mm (20 GA) steel
stud, 610 mm (24” OC)

U 425 2 HR Bearing Wall Interior UL 1988 -3 layers 13 mm (½”) thick, G.W.B
-89 mm (3 ½”) X 0.87 mm (20 GA) steel
stud, 610 mm (24”) OC

U 425 ¾, 1, 1 ½ HR Bearing Wall Exterior UL 1988 See test
U 425 2 HR Bearing Wall Exterior UL 1988 -3 layers 13mm (½”) thick, G.W.B, interior

side
-89 mm (3 ½”) X 0.87 mm (20 GA) steel
stud, 610 mm (24”) OC
-See test for exterior component

U 426 3 HR Bearing Wall UL 1988 -4 layers 13 mm (½”) thick, G.W.B, each
side
-89 mm (3 ½”) X 0.87 mm (20 GA) steel
stud, 610 mm (24”) OC

U 434 1 HR Bearing Wall UL 1988 -1 layer 16 mm (5/8”) thick, G.W.B, interior
side
-89 mm (3 ½”) X 0.87 mm (20 GA) steel
stud, 610 mm (24”) OC
-22 mm (7/8”) thick Portland Cement
Plaster

Notes:
A: UL denotes Underwriters Laboratories, Inc., and FM denotes Factory Mutual Research Corporation.
B: Lightweight concrete measured from top flute of deck.
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CHAPTER 2

COLD-FORMED STEEL DESIGN

1.  INTRODUCTION.  There are three design methods available to the designer: direct
application of the AISI Specification, prescriptive methods, and testing of designed assemblies.
The AISI specification can be used for the bulk of design calculations when selecting beams,
columns, web stiffeners, and effective section properties.  AISI has guides for shear walls and
cold-formed steel trusses.  These design guides can be used for Corps of Engineers projects, but
are limited to all steel designs.  The use of plywood and oriented strand board are not allowed in
permanent Military design.  When a designed assembly does not fall within the limits of these
design guides, those assemblies must be tested.  The prescriptive method that follows should
only be used within its stated limits, and was created to serve the single family housing industry.

2.  PRESCRIPTIVE METHODS.

a.  General.  One method of designing one and two family homes is to use the Prescriptive
Methods for residential Cold-Formed Steel Framing, by the U.S. Department of Housing and
Urban Development and the National Home Builders Association.  The limitations for the
prescriptive method of design are summarized in the table below and apply to residential type
construction.  Building loads are determined by using the ASCE 7-93 Minimum Load Assumption
for Buildings.

Table 2-1. Summary of Prescriptive Methods Limitations
  Web depths  Deflection Limits

Bearing Walls Heights Walls Remarks
100 mm (4”) 2.4 to 3.0 m (8 to 10 ft) L/240 Total Load
150mm (6”) 2.4 to 3.0 m (8 to 10 ft)  L/360 Live Load

Joists/Rafters Spans Joists
300mm (12”) 2.4 to 4.9m (8 to 16 ft) L/240 Total Load
350mm (14”) 2.1 to 6.4m (7 to 21 ft) L/480 Live Load
400mm (16”) 3.9 to 7.9m (13 to 26 ft) Rafters

Ceiling Joists Spans L/180 Total Load
100mm (4”) 2.4 to 4.9m (8 to 16 ft) L/240 Live Load
150mm (6”) 2.7 to 7.0m (9 to 23 ft) Ceiling Joists
200mm (8”) 3.0 to 7.9m (10 to 26 ft) L/240 Total Load
250mm (10”) 3.7 to 8.2m (12 to 27 ft) Headers
300mm (12”) 3.7 to 8.8m (12 to 29 ft) L/240 Total Load

Flange 41 mm
(1.625”)

Lip 13 mm (0.5”)

Max House Width
11 m (36 ft)

L/360 Live Load

Notes:
1.  Self-drilling and tapping screws: SAE J78, use a minimum edge and end distance of 3
diameters, a minimum of three exposed threads, and components in contact with each other, no
gaps between connected parts.  In connections that are in shear only, a minimum edge distance
of 1.5 diameters in the direction of the force shall be used.

2.  Dimensions in this table were originally in U.S. Customary units.  Light gage steel materials
are available as soft metric equivalents.

b.  Material Thickness.  Designers need to specify the Design or Nominal thickness of the
material required.  However, the minimum thickness of material that can be delivered to the job
site is 95% of the design thickness specified, see Table 1-1.  When using this method of
specifying materials the designer will always get a material thicker than the minimum shown in
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the Table 1-1, and the design factor of safety, W and the resistance factor, f  accounts for this
difference in thickness.  Then the material should be coated with a minimum of ASTM A294, G60
galvanized coating for corrosion protection.  The following is a listing of the material’s design
thickness used in the Prescriptive Methods code.  Also, this code has developed a standard
method for marking each stud.  The industry identifier of 350S162-068 is read as a 39 mm (3.50
“) Stud with a 41 mm (1.62 “) flange and a material thickness of 1.81 mm (68 mils).  In general
studs used in this code are the same overall dimensions as their wood stud counterpart.

· Bearing Walls: 0.84, 1.09, 1.37, 1.72, 2.45 mm (33, 43, 54, 68, 97 mils)
· Nonstructural Walls: 0.46, 0.68 mm (18, 27 mils)
· Joists/Rafters: 0.84, 1.09, 1.37, 1.72, 2.45 mm (33, 43, 54, 68, 97 mils)
· Ceiling Joists: 0.84, 1.09, 1.37, 1.72, 2.45 mm (33, 43, 54, 68, 97 mils)
· Strapping: 0.84 mm (33 mils)

c.  Engineered Portions of the Prescriptive Code.  When using the Council of American
Building Officials (CABO) Prescriptive Code (National Association of Home Builders report) there
are many conditions that need to be checked by the design engineer.  When using the
Prescriptive method, the design engineer shall check the selection of the buildings main structural
members, as this method uses building loads from ASCE 7-93.  The design loads will be
upgraded to the most current ASCE 7 standard.  The following components are engineered
portions of the prescriptive code.

· Sheathing selection and design when over 145 Km/hr (90 mph) winds and seismic
zones 3 and 4
· Hybrid systems that use steel and wood
· Wall bracing, hold-downs and uplift straps for Winds loads greater than 145 Km/hr
(90mph), and for Seismic Zones 3 and 4
· Pneumatically driven fasteners, powder actuated fasteners, crimping, and welding
· Overhangs, balconies, and decks with live loads greater than 1.92 KPa (40 psf)
· Floor joist splices and the design and bracing of Cold-formed Steel floor trusses
· In-line blocking every 3.7 m (12 ft) on strap braced studs
· The approval of corner framing details
· Steel strapping and ‘X’ bracing
· Cathedral ceilings
· Wood rafters
· Ceiling joist and rafter splices
· Steel and/or wood roof trusses and associated bracing systems
· King stud and wall stud uplift straps and end gable uplift straps
· Load carrying track members

3.  COLD-FORMED STEEL FRAMING.

a. General.  There are many differences when steel designers start using lightweight steel
framing systems.  Generally cold-formed sections are shaped and formed from flat sheets, their
original mechanical properties are changed during cold-forming, there are no standard shapes,
the thickness of materials are generally less then 3 mm (1/8 inch) thick, and the predominate
failure mode is buckling followed by a post-buckling strength increase.

b.  Design Guidance.  Guidance from the American Iron and Steel Institute (AISI) applies to
materials with a thickness that is less than 5 mm (3/16 inch) thick for connections, and plate up to
25 mm (1 inch) can be cold-formed.  Guidance from the American Institute of Steel Construction
(AISC) applies to thicker materials. When using cold-formed stainless steel, design requirements
can be found in American Society of Civil Engineers (ASCE) criteria.  The 1996 AISI specification
covers material usage, loading combinations (ASCE 7), the structural analysis of elements,
members, and assemblies, the design of connections and joints, and the testing for special
cases.
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(1)  Section A, General Provisions.  This section discusses the limits of applicability,
materials, loads allowable stress design (ASD), load resistance factor design (LRFD), strength
increase due to cold working, and serviceability.

(2)  Section B, Elements.  This section discusses dimensional limits, the effective
widths of stiffened and unstiffened elements, and stiffeners.   This analysis considers the flat
widths and thickness of the flange, the web, and the lip, along with the effects of any intermediate
stiffeners.  The element analysis is used to determine the effectiveness of the element and the
design stress level for that element.

(3)  Section C, Members.  This section goes into the calculation of section properties,
the design of tension members, flexural members, concentrically loaded members, members in
combined axial and bending, and cylindrical tubular members.  In Figure 2-1 is shown the
common section symmetries used in cold-formed steel design.  Section symmetries are defined
by using the relative positions of the center of gravity (CG) and shear center (SC) of the sections
geometry.  Sections having separate locations for the CG and SC are singly symmetric.  When
they are collocated at the same point they are doubly or point (Z sections of equal flange width)
symmetric.

Figure 2-1 Typical Cold-Formed Section Symmetries
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(4)  Section D, Structural Assemblies.  This section deals with structural assemblies.
This section includes discussions on built-up sections, mixed systems, lateral bracing, wall stud
systems, and floor, roof or wall steel diaphragm construction.

(5)  Section E, Connections and Joints.  This section covers the design of
connections and joints, and includes welded connections, bolted connections, screw connections,
shear rupture, and connection to other materials.  The provisions for screw connections is new
with this edition.

(6)  Section F, Test for Special Cases.  This section discusses testing methods and
procedures for the conditions not specifically covered in the specification.  This would include
such tests for determining structural performance, confirming structural performance, and
determining mechanical performance.  Design guidance for shear walls will be performed in
accordance with chapter 3 of this manual.

c.  Wall Studs and Roof Trusses.  Wall stud and roof framing sections are typically made
from C shaped sections.  These wall stud sections should always have a stiffening lip to aid in the
development of the flange flat width

Table 2-2. AISI Approved Steels (Section A3.1)
Steels that are allowed and are not shown must comply with the ductility requirements of Sections
A3.2 and A3.3.  The typically provided by the manufacturer is Other Steel in the AISI Specification
and requires the use of material coupons to verify material properties.
ASTM A653 ,
Grades 33, 37, 40, 50
(Most common)

Fy =228 to 345 Mpa
(33 to 50 ksi)

Fu = 310 to 483 MPa
(45 to 70 ksi)

ASTM A653
Grade 80 (Deck and Panels)

Fy = 552 MPa
(80 ksi)

Fu = 565 MPa
(82 ksi)

ASTM A500
Tubes only

Fy =228 to 345 MPa
(33 to 50 ksi)

Fu = 310 to 427 MPa
(45 to 62 ksi)

d.  Effective Width.  The major cold-formed steel design concept is the “Effective Design
Width” of flat elements.  These flat elements can be stiffened, partially stiffened, or unstiffened.
Using a bent edge that can form a lip as on a C or Z section stiffens flat elements.  Also, using an
intermediate crease in the middle of the flat element on the top of a hat section, or using another
flat element such as the sides of a hat section.  When the stiffening element is not fully effective
such as an overly long lip on a C or Z section the flat element is partially stiffened.  An unstiffened
element would be a C or Z section that does not have an edge lip.  Cold-formed steel sections
have very high width to thickness ratios which means elements within the section are susceptible
to local buckling.  Therefore, only that portion of the section that is capable of taking load is
included in the effective width of the flat element.  Currently, only the AISI approach to determine
effective section properties is allowed, other methods that have been used include finite strip
analysis and finite element methods.

e.  Advantages of Cold-Formed Steel.  The advantages of cold-formed steel systems occur
because of several unique material characteristics such as: the recyclable nature of the material,
low weight, high strength, custom shapes, rounded corners with no fillets, post buckling strength,
and element stiffening characteristics.

f.  Limit States.  Designers should recognize the two limit states used in the AISI
specification: the Ultimate Limit State (ULS) and the Serviceability Limit State (SLS).  The first
limit state is a function of strength, the second is structural function.  AISI has  very limited
coverage of serviceability limit states since they are different for each owner, user, and designer,
see Paragraph 4.j. for further guidance on live load deflection limits.  Typical design
considerations for a member in bending would show how these two limit states are used.  The
strength limit states for beams would include: flexure, shear, web crippling, and shear lag, while
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the serviceability limit state would include deflections and flange curling.  Many times section will
look distressed, buckled or distorted and still have a great deal of strength remaining.  Therefore,
serviceability limit states are set to reduce distortion effects.

g.  Design Thickness.  Designers need to calculate the sectional properties using the
design or nominal thickness of the material.  The AISI design equations do account for the
minimum or delivered thickness difference.  When using the AISI specification the equation for
calculating the nominal strength of the section are the same for Allowable Strength Design (ASD)
or Load Factor Resistant Design (LRFD) methods.  The method of calculation of section
properties is unique to the AISI specification as effective sections properties are used in many of
their procedures.  Thin materials and high strength steels combine to make sections that are
subject to not only local buckling, lateral buckling, but also lateral-torsional buckling, and
therefore, sections are not always fully effective.  Non-fully effective sections need to have their
effective section properties calculated.  This calculation is a iterative process for C and Z
sections, when the neutral axis is located nearer to the tension flange of the section, and the
section properties are calculated based on the compression flange yielding first.  The effective
section is based on the effective flat widths of the compression-flange, the flange-lip, and the
section’s web.    All sections are to be designed to develop their full strength using an all steel
design.  This means that all cold-formed steel sections are to be braced with steel to prevent
lateral or lateral-torsional buckling created by lateral or twisting loads.  Sheathing and gypsum
wall board are not allowed to brace the stud section.  When the section is fully effective the
nominal moment capacity is equal to the fully effective section modulus times the yield strength of
the steel.  Typically, cold-formed sections are too thin to develop plastic sections and cannot
redistribute plastic moments.  Also, web crippling is usually required at concentrated loads and at
beam supports, and web reinforcement may be required around pipe openings.  Around these
areas of the beam designers should check the requirements for beam web stiffening with
reinforcement plates at pipe opening or web crippling at supports and concentrated loads as
necessary.

4.  DESIGN OF STRUCTURAL ELEMENTS

a.  AISI Specification.  The AISI Specification for the Design of Cold-Formed Structural
Members-1996 applies to the design of all cold-formed steel members.

b.  Preliminary Member Selection.  A good report to use when designing cold-formed steel
sections is the AISI Report CF 93-1, “Preliminary Design Guide for Cold-Formed C and Z
Members”, June 1993.  This report uses Gross section properties and reduced stresses to size
cold-formed sections.  It has in it design procedures for strength in bending, strength in shear,
strength in combined bending and shear, strength in web crippling, strength of concentrically
loaded compression members, and strength in combined axial and bending.  Designers using this
procedure will normally be conservative by 5 to 15%.

c.  Element Behavior.  Designers will quickly learn about the characteristics of thin
compression elements, elastic buckling, and post buckling strength.  Within the AISI criteria
stresses are referred to as flat plate elements and plate stresses, these are in reference to the flat
rolled elements of the cross section being analyzed.  Designers should note that AISI assumes
that flat plate stresses are assumed to be uniform across the plate element’s width as the plate
reaches the critical plate buckling stress, which has a nonuniform distribution.  Sine wave ripples
along the length of the member characterize buckling of a thin compression element.  Thin plate
elements go into an elastic buckling mode when the longitudinal plate stresses exceed fcr, the
critical buckling stress of the element as calculated by Equation 2-1.  As flat elements buckle the
plate stresses are redistributed to the stiffened edges of the plate, and edge stresses approach
the yield stress of the steel. Therefore, the effective width is a function of the design stress.  This
redistribution effect was developed by Mr. George Winter at Cornell University, and has been
used by the airline industry since the 1940’s.  This is the basis of the effective width concept used
to design cold-formed steel section.  The constant l (lambda) as shown in Equation 2-2 is used to
calculate the effective width of the flat element.  Values of l less than or equal to 0.673 indicate a
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fully effective element, otherwise they are less than fully effective.  While such an effect may
appear to be detrimental there can still be a significant amount of strength remaining.  The elastic
critical buckling factor, k of a stiffened element can increased by a factor of 9.3 over an
unstiffened element.

(Eq 2-1)

(Eq 2-2)

when

(Eq 2-3)
when

(Eq 2-4)

(Eq 2-5)

Where:
l = an element slenderness factor
k = a plate buckling coefficient = 4 for a stiffened element, and 0.43 for an unstiffened

element
w = the flat width of the element
t = the thickness of the element
f = the design stress in the element determined at the Nominal Moment (Mn) based on the

effective section properties
fcr = the critical elastic buckling stress for the plate
E = the modulus of elasticity of the element
r = an effective width factor
m = Poisson’s ratio (0.3 for steel) in the elastic range

d.  Element Slenderness.  A review of the slenderness factor shows the relationship of the
width to thickness ratio to design stress.  Very thin members are less effective at higher stresses.
The AISI specification limits element w/t ratios to be less then 60 for flanges that are stiffened
with simple lips (C and Z sections), and flanges that are stiffened with elements that are stiffened
(hat sections) to less than 500.  When elements have a w/t ratio greater than 30 and 250 they will
display a noticeable waviness before reaching their design capacity, this does not effect the
members final design capacity.

e.  Simplified Section Properties.  A simplified approach to calculating section properties
uses the centerline of each section element.  Section properties are calculated by using the
corners and flat element dimensions.  When calculating the moment of inertia the corners are so
small they can be ignored.  When a lip is used to stiffened an element the moment of inertia of
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the edge stiffener must be greater than the required moment of inertia per AISI Section B2,
Effective Widths of Stiffened Elements.  When the neutral axis is closer to the tension flange or at
mid-depth on a symmetrical section, the design stress in the tension flange is at yield, and l is
calculated based on the compression stress in the flange.  Should the neutral axis be closer to
the compression flange than the solution becomes iterative to locate the neutral axis,
compressive stress, and l.

f.  Members.

(1)  Properties of Sections, Section C1.  Typically full cross section properties are
used except where reduced or effective element widths are required.  A computer program is
needed to efficiently calculate effective section properties

(2)  Tension Members, Section C2.  Common rules for hole placement and largest
hole reduction is in AISI specification.  Currently there are no shear lag provisions in the
specification.  However, there will be in the future manual.  Also, A307 Bolts are commonly used
in Cold-Formed Steel design.

(3)  Flexural Members, Section C3.

(a)  Strength for Bending Only, Section C3.1. Reference Yura on member
bracing.  For screw down roof systems, brace the C’s and Z’s at 1/3 points for uplift loads only.

(b)  Strength for Shear Only, Section C3.2

(c)  Strength for Combined Bending and Shear, Section C3.3.

(d)  Web Crippling Strength, Section C3.4.

(e)  Combined Bending and Web Crippling Strength, Section C3.5.

(4)  Concentrically Loaded Compression Members, Section C4.  Torsional-Flexural
Buckling is unique to cold-formed columns and beam-columns. and the Factor of Safety for
Columns is equal to 1.80.  Torsional-Flexural Buckling controls most columns.

(a)  Sections Not Subject to Torsional or Torsional-Flexural Buckling, Section
C4.1.

(b)  Doubly or Singly Symmetric Sections Subject to Torsional or Torsional –
Flexural Buckling, Section C4.2

(c)  Nonsymmetrical Sections, Section C4.3.

(d)  Compression Members Having One Flange Through-Fastened to Deck or
Sheathing, Section C4.4.

(5)  Combined Axial Load and Bending, Section C5.

(a)  Combined Tensile and Axial Load and Bending, Section C5.1.

(b)  Combined Compressive Axial Load and Bending, Section C5.2

(6)  Cylindrical Tubular Members, Section C6.

(a)  Bending, Section C6.1.

(b)  Compression, Section C6.2
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(c)  Combined Bending and Compression, Section C6.3.

g.  Wall Studs and Wall Stud Assemblies.  Section D4.  Use only all steel designs.
Therefore only paragraph (a) is allowable.  The effective area, Ae and the nominal buckling
stress, Fn are to be calculated in accordance with Section B.

(1)  Wall Studs in Compression.  Section D4.1.  Studs need to be checked for column
buckling between fasteners (a) and flexural and or torsional column buckling (b).  Paragraph (c) is
not to be used since it deals with sheathing for bracing.  Studs used in wall sections will be firmly
placed in the track prior to attachment of the stud track units.  No gaps will be allowed between
the stud web/flange and the track being assembled.

(2)  Wall Studs in Bending.  Section D4.2.  Wall studs should always have stiffened or
partially stiffened compression flanges.  Ignore the values shown for unstiffened compression
flanges.  The provisions of Section C3.1 apply to the bending strength of the member except for
Section C3.1.2 Lateral Buckling Strength.  Calculations should be based on stiffened and partially
stiffened compression flanges when determining the nominal moment capacities Mnxo and Mnyo.
Anchor bridging to solid blocking is critical

(3)  Wall Studs with Combined Axial Load and Bending.  Section D4.3.  Interaction
equations for this loading condition are in Section C5.

(4)  Floor, Roof or Wall Steel Diaphragm Construction.  Section D5.  This section
provides design values for various diaphragm conditions.

h.  Design Guide for Cold-Formed Steel Trusses - AISI RG-9518.  Trusses will be designed
using the following guidance.

(1)  Member ends will be assume to be pinned.

(2)  Webs of members are to be pinned.

(3)  Unbraced lengths will be:
(a)  Continuous chord members,

· Kx, Ky, Kt = 0.75 when appropriate sheathing is attached to the top
and bottom flange of those chords.

· Kx, Ky, Kt for other conditions = unity or 1.0.

(b)  Compression web members K = 1.0.

(c)  End moment coefficient, Cm = 0.85, and strength amplification factor, Cb per
AISI C3.1.2

(d)  Compression chord with combined axial and bending use section C5 at
panel points Equation C5.2.1-2, and between panel points equation
C5.2.1-7.

Where:
Lx, Lt = panel length
Ly = distance between sheathing connections

i.  Shear Wall Design Guide - AISI RG-9604 and Chapter 3 of this manual.

(1)  Braced shear wall systems will be designed for strength and stiffness as follows.
The greater requirement will control the size of the bracing system.  Also, the designer will
consider the seismic bracing guidance in Chapter 3 of this technical instruction.
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( )B
LP004.0Fbr =

(2)  Strength requirements for a brace force of, Fbr as follows for ASD or LRFD design
methods:

(Eq 2-6)

Where:
Fbr = Brace force in consistent units.
P = Share of the gravity load supported by the shear wall frame.  Should two frames

support the entire floor load P is ½ the floor load.
L = Length of diagonal brace.
B = Width of the frame bent.

(3)  Brace Stiffness will meet the following requirement:

(Eq 2-7)

Where:
Ab = Cross sectional area of the brace in consistent units.
C = Constant: ASD = 4, LRFD = 2.67.
P = Share of gravity load supported by the braced frame for lateral stability.
L = Length of diagonal brace.
E = 29,500 Ksi, or 203 395 MPa.
h = Height of braced frame.
B = Width of braced frame.

j.  Serviceability Deflection Limits

(1)  Live Load Deflections.  Deflection criteria for buildings under load are
generally established to ensure functional performance and economy of design.  Many of the
deflection limits used today have been established based on past performances and the
perception of the occupants in a building.  A consideration for deflection limits is often tied into the
performance of the attached claddings.  A stiffer cladding requires a stiffer backup to prevent
damage to the cladding.  In the case of floor joists, the limit may be established to reduce
vibrations (see paragraph 2.4.m) which are unacceptable to the occupants.  In any case,
consideration should be given to all serviceability issues.  The following list is a compilation of
suggested deflection limits by manufacturers, trade groups and building officials that may be
applied to light gauge metal framed structures.  The list below assumes limits at full dead plus live
load; full dead plus snow; or full dead plus wind load unless noted otherwise.

Exterior wall finishes
Brick veneer over sheathed framing L/600
Stucco over sheathed or open framing L/360
Exterior Insulation Finish Systems L/240
Cement board sheathing over framing L/360
Stone (marble, granite, limestone) VERIFY WITH STONE

SUPPLIER
Plywood and Oriented strand board L/240
Gypsum sheathing over framing L/240
Metal or vinyl siding over sheathed framing L/240

Interior wall finishes
Plaster L/360
Ceramic tiles L/360

( )( )
( )( )2

3

b BhE
LPC

A =
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Gypsum drywall L/240
Wood finishes L/240

Floors
Residential L/360 total load; L/480 live loads
Office and storage L/240 total load; L/360 live loads

Roofs
Trusses L/240 total load; L/360 live load
Rafters L/180 total load; L/240 live load

(2)  Drift Limits.  See Chapter 3 for drift limits guidance when using cold-formed
steel shear walls.  Deflection states for buildings broadly encompass a variety of design
considerations the designer should be aware of but are not covered in this brief synopsis.  The
deflection limits stated above are the limit states for various building elements under load.  There
are also limits for lateral deflections (story drifts) due to wind or seismic loading of the building,
these are best determined by review of the applicable model building code.  Another
consideration for the designer is long term deflection (creep).  While this often does not effect the
design, creep should be considered when a large proportion of the total load is do to permanent
(dead) loads.

k.  Continuous Beams and Joists.  “Effective Lengths for Laterally Unbraced Compression
Flanges of Continuous Beams Near Intermediate Supports” by J. H. Garrett, Jr., G. Haaijer, and
K. H. Klippstein, Proceedings, Sixth Specialty Conference on Cold-Formed Steel Structures,
University of Missouri-Rolla / American Iron and Steel Institute

l.  Effect of Holes.  Proposed additions to the Specification for the Design of Cold-Formed
Steel Structural Members and accompanying Commentary, Sections B2.4, C3.2.2, and C3.4.2,
based on University of Missouri-Rolla, Department of Civil Engineering, Reports on Behavior of
Cold-Formed Steel Sections with Web Openings, by Roger A. LaBoube.  Table 2-3 shows the
typical dimensions of holes that can be placed in various size joist members.

Table 2-3:  Pipe Openings: Maximum Pipe Opening and Web Reinforcement
Joist Size with

41.3 mm (1-5/8”)
Flange
mm (in)

“d” Max hole
Diameter

mm (in)

“b” Plate Size

mm (in)

“a” Screw Hole
Spacing

mm (in)

“c” Edge
Distance

mm (in)

“A” Min Distance
to Concentrated
Load or Support

292 (11.5) 175 (6-7/8) 229 (9) 67 (2-5/8) 14 (9/16) L/6
235 (9.25) 133(5-1/4) 229 (9) 57 (2-1/4) 24 (15/16) L/25
203 (8.0) 108 (4-1/4) 178 (7) 48 (1-7/8) 17 (11/16) L/16

184 (7.25) 108 (4-1/4) 178 (7) 48 (1-7/8) 17 (11/16) L/16
152 (6.0) 89 (3-1/2) 133 (5-1/4) 37 (1-7/16) 12 (15/32) L/10

Notes:
1.  L = joist span.
2.  b = reinforcement plate dimensions for a square plate.
3.  a = spacing between screw holes that attach the reinforcement plate to the joist.
4.  c = Minimum edge distance of screws from the edge of the reinforcement plate.

m.  Floor Vibrations.  Light weight floors and short spans can lead to vibration problems in
floor systems.  The following methods uses the dimensions and cross-sectional properties of the
floor and the predicted central floor deflection.  This procedure was developed by Kraus and
Murray for residential floor systems.

(1)  Calculate the critical central floor deflection, ycrit (in) from Onysko’s Criterion (Onsyko
1995):

3.1crit
L

32.37
y =

(Eq 2-8)
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Where:
L = Floor span in inches

(2)  Calculate the predicted deflection of a single joist, D
ot
 due to a 255 lb concentrated

load at midspan:

EI48
L255 3

ot =D (Eq 2-9)

Where:
L = Floor span in  inches.
E = Modulus of Elasticity of the joist.
I = Moment of Inertia of a single joist.

(3)  Calculate the number of effective joist, N
eff

 from the Steel Joist Institute (SJI)

equation:

å ÷÷
ø

ö
çç
è

æ p
+=

o
eff x2

x
cos21N (Eq 2-10)

Where:
x = Distance from the center joist to the joist under consideration (inches).
x

o
 = Distance from center joist to the edge of the effective floor = 1.06eL (inches).

L = Joist span (inches).

e = (D
x
/D

y
)
0.25

D
x
 = Flexural stiffness perpendicular to the joist = E

c
t
3
/12

D
y
 = Flexural stiffness parallel to the floor joists = EI

t
/S

E
c
 = Modulus of elasticity of the sub-flooring.

E = Modulus of elasticity of the joists.
t = sub-flooring thickness.
I
t
 = Moment of inertia of joists alone.

S = Joist Spacing.

(4)  Calculate the predicted central floor deflection, D
o
:

eff

ot
o N

D
=D (Eq 2-11)

Where:
D

o
 = Deflection of floor at mid-bay.

D
ot
 = Deflection of a single joist due to 255 lb. concentrated load at midspan.

N
eff

 = Number of effective joists in the floor system.

(5)  Compare the D
o
 value to the critical deflection, y

crit
:

If D
o 
< y

crit
: Acceptable

If     y
crit

 < D
o 
£ 1.1  y

crit
: Marginal

If D
o 
> 1.1 y

crit
: Unacceptable
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5.  FASTENERS AND CONNECTIONS

a.  Sheet Metal Screws.  AISI Specification for the Design of Cold-Formed Steel Structural
Members and accompanying Commentary - Section E4.  This section is applicable to screws with
a nominal diameter of 2.03 mm (0.08 in) £ d £  6.35 mm (0.25 in).  The nominal diameter is
measured across the threads and will be thread forming or thread cutting.  Screws may be used
with or without a self drilling point.  Table 2-4 gives some suggested loading values for screw
connections.  Pullout values are for attaching facing materials and are not to be used for
connection design.

b  Bolts.  AISI Specification for the Design of Cold-Formed Steel Structural Members
and accompanying Commentary - Section E3.  Bolts are designed for sheets with the thinnest
sheet being less than 4.8 mm (3/16 in).  When the thinnest sheet is greater than 4.8 mm (3/16 in)
use the AISC specification.  Four design conditions need to be considered:

· Longitudinal shearing of the sheet parallel to the through the end of the sheet,
· Bearing or piling up behind the bolt,
· Tearing through the net section,
· Shearing of the bolt.

Table 2-4:  Suggested Capacities for Screw Connectors in kN (lbs)
No. ¼-14 No. 12-14 No. 10-14 No. 8-14 No. 6Steel

Nominal /
Design

Thickness
mm (in)

Shear or
Bearing

Pullout Shear or
Bearing

Pullout Shear or
Bearing

Pullout Shear or
Bearing

Pullout Shear or
Bearing

Pullout

2.583
(0.1017)

2.60
(585)

1.57
(352)

2.00
(450)

1.44
(324)

1.45
(327)

1.40
(314)

NA 1.35
(303)

NA NA

1.811
(0.0713)

2.27
(511)

1.08
(242)

1.83
(412)

0.96
(215)

1.27
(286)

0.91
(205)

NA 0.89
(200)

NA NA

1.438
(0.0566)

1.89
(426)

0.71
(159)

1.68
(377)

0.68
(153)

1.16
(261)

0.67
(151)

1.05
(236)

0.63
(142)

NA 0.59
(132)

1.146
(0.0451)

1.34
(301)

0.45
(101)

1.23
(276)

0.45
(101)

1.17
(263)

0.44
(98)

1.10
(248)

0.42
(94)

0.84
(188)

0.37
(83)

0.879
(0.0346)

0.69
(154)

0.32
(71)

0.64
(143)

0.31
(70)

0.63
(141)

0.31
(69)

0.62
(140)

0.30
(68)

0.59
(133)

0.24
(53)

Notes:
1.  NA: not applicable, two thicknesses of this metal gage cannot be connected by this size screw.
2.  Screw capacity is based on a minimum connected strength of F

y
 = 228 MPa (33 ksi).  The ratio of the material ultimate tensile

strength to yield strength should be equal to or greater than 1.15.
3.  Screw a spacing and edge distance shall not be less than 1.5D or P/0.6F

yt
, where D is the screw shank diameter and P is the

shear load.
4.  Screw capacities are based on average test results divided by a safety factor of 3.0.  Test data is available from Buildex Division
of ITW, Inc Itasca, Illinios; test #845, uninspected values.
5. For steels having yields other than 228 MPa (33 ksi), use the following formula:

Table Value(Actual yield strength)/(228 or 33 in consistent units) = New value

c.  Welds.  AISI Specification for the Design of Cold-Formed Steel Structural Members and
accompanying Commentary - Section E2.  The maximum thickness for the use of the AISI
specification when welding sheets together is 4.6 mm (0.18 in) for the thinnest sheet.  When
welding thicker sheets use the AISC specification.  Resistant welded sheets are limited to 3.2 mm
(0.125 in) or less for the thinnest sheet.  Table 2-5 gives some suggested values for fillet and
flare-groove welds.
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Table 2-5:  Suggested Design Loads for Fillet and Flare-Bevel Groove Welds
Weld StrengthDesign Thickness

t
mm (in)

Weld Size

mm (in)
Fillet

N/mm (lbs/in)
Flare-Bevel Groove

N/mm (lbs/in)
3.15 mm (0.1240”) 4.76 (3/16) 215 (1228) 172 (982)

2.583 (0.1017) 3.97 (5/32) 176 (1007) 141 (806)
1.811 (0.0713) 3.18 (1/8) 124 (706) 99 (565)
1.438 (0.0566) 3.18 (1/8) 98 (560) 78 (448)
1.146 (0.0451) 3.18 (1/8) 78 (447) 63 (358)

Notes:
1.  Welds can be positioned in shear or tension.
2.  Weld strength for fillet = 0.3 F

y
t, where t = minimum welded material thickness.

3.  Weld Strength for flare-bevel groove = 0.3 F
y
t/1.25.

4.  Values shown are for F
y
 = 228 MPa (33 ksi).  For F

y
 = 278 MPa (40 ksi) multiply tabulated values by 1.33.  For F

y
 =

345 MPa(50 ksi) multiply tabulated values by 1.52.
5.  Flare-bevel groove welds occur between the outside radius of one piece and a flat surface of another piece.

d.  Anchors.  ASTM F 1554 for Anchor Bolts covers straight, bent, headed, and headless
bolts for anchoring the structural support to the foundation.  Bolts covered have diameters from
6.35 mm (¼ in) to 101.6 mm (4 in) and yield strengths of 248, 379, and 724 MPa (36, 55 and 105
ksi).

i)  Expansion Anchors or similar devices will be designed as bolted connection between
the anchor and the cold-formed structure.  In lieu of specific anchor data the suggested
values in table 2-6 may be used.  Designer must assure that the anchors as supplied
meet the design requirements.

Table 2-6:  Suggested Capacity for Expansion Anchors in Stone Aggregate Concrete
Concrete Strength MPa (psi)Anchor

Diameter

mm (in)

Minimum
Embedment

mm (in)

Type of
Loading 13.8

(2000)

kN (lbs)

27.6
(4000)

kN (lbs)

41.4
(6000)

kN (lbs)

Minimum
Anchor
Spacing

mm (in)

Minimum
Edge

Distance

mm (in)
6.35
(¼)

64
(2-1/2)

Pullout
Shear

1.45 (325)
1.69 (380)

1.89 (420)
2.89 (650)

1.87 (420)
2.89 (650)

64
(2-1/2)

32
(1-1/4)

13
(½)

70
(2-3/4)

Pullout
Shear

2.96 (665)
7.6 (1710)

4.00 (900)
9.25 (2080)

5.38 (1210)
10.3 (2320)

127
(5)

64
(2-1/2)

19
(¾)

83
(3-1/4)

Pullout
Shear

4.16 (935)
13.6 (3050)

5.65 (1270)
19.0 (4270)

6.0 (1360)
20.0 (4510)

191
(7-1/2)

95
(3-3/4)

25
(1)

114
(4-1/2)

Pullout
Shear

7.2 (1610)
27.9 (6280)

8.9 (2000)
29.9 (6720)

11.3 (2530)
35.4 (7960)

254
(10)

127
(5)

Notes:
1.  Pullout values listed may be doubled with special inspection.
2.  Values may not be increased 1/3 for wind for seismic loads.
3.  ICBO uninspected values - Hilti/ICBO report #2156.

ii) Powder driven pins may be used to attach cold-formed members to concrete or
structural steel typical suggested capacities are shown in tables 2-7 and 2-8.

e.  Connections and Joints.  In Cold-formed steel design the AISI specification is to be used
when the thickness of the thinnest sheet being connected is less than 4.8 mm (3/16”), when the
thickness of the thinnest material is greater than 4.8 mm (3/16”) use the AISC specification.  AISI
uses only bearing connections, snug tight fit.  In cold-formed design washers are typically not
used in cold-formed steel construction.  The primary mode of failure is sheet tearing for AISI
designed connections.  Two limit states are considered in the design of cold-formed steel
connections: tilting of screw and subsequential tearing of sheet, and tension pull over are
common.  Riveted and crimped fasteners are proprietary connections, they are not to be used in
COE designs.  Table 2-9 gives some suggested loads per fastener for joist clip angles.
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Table 2-7:  Suggested Capacity for Powder Driven Fasteners in Concrete
Concrete Compressive Strength MPa (psi)Shank Diameter

Mm (in)

Minimum
Penetration

mm  (in)

Type of  Loading
13.8 (2000)

N (lbs)

20.7 (3000)

N (lbs)

27.6 (4000)

N (lbs)
3.68

(0.145)
29

(1-1/8)
Pullout
Shear

0.40 (90)
0.71 (160)

0.51 (115)
1.00 (225)

0.65 (145)
1.18 (265)

4.50
(0.177)

37
(1-7/16)

Pullout
Shear

0.67 (150)
1.11 (250)

0.91 (205)
1.27 (285)

1.22 (275)
1.47 (330)

5.21
(0.205)

32
(1-1/4)

Pullout
Shear

0.98 (220)
1.74 (390)

1.25 (280)
1.98 (445)

1.54 (345)
2.22 (500)

Notes:
1.  Capacities shown are for stone aggregate concrete and are based on a low velocity shot.
2.  Minimum fastener spacing: 4”; minimum fastener edge distance: 3”.
3.  Values may not be increased by 1/3 for wind or seismic loads.
4.  ICBO uninspected values - Hilti/ICBO research #2388.

Table 2-8: Suggested Capacity for Powder Driven Fasteners in Structural Steel
Shank Dia: 3.68 mm (0.145”) Shank Dia: 4.50 mm (0.177”) Shank Dia: 5.21 mm  (0.205”)Steel

Thickness

mm (in)

6.35 mm
(¼”)

kN (lbs)

9.53 mm
(3/8”)

kN(lbs)

13 mm
(½”)

kN(lbs)

6.35 mm
(¼”)

kN(lbs)

9.53 mm
(3/8”)

kN(lbs)

13 mm
(½”)

kN(lbs)

6.35 mm
(¼”)

kN(lbs)

9.53 mm
(3/8”)

kN(lbs)

!3 mm
(½”)

kN(lbs)

2.583
(0.1017)

0.93
(210)

0.93
(210)

0.93
(210)

1.49
(335)

1.76
(395)

1.76
(395)

2.16
(485)

2.34
(525)

2.94
(660)

1.811
(0.0713)

0.93
(210)

0.93
(210)

0.93
(210)

1.49
(335)

1.76
(395)

1.76
(395)

2.16
(485)

2.34
(525)

2.58
(581)

1.438
(0.0566)

0.93
(210)

0.93
(210)

0.93
(210)

1.49
(335)

1.76
(395)

1.76
(395)

2.16
(485)

2.07
(465)

2.07
(465)

1.146
(0.0451)

0.93
(210)

0.93
(210)

0.93
(210)

1.43
(321)

1.43
(321)

1.43
(321)

1.65
(372)

1.65
(372)

1.65
(372)

0.879
(0.0346)

0.88
(197)

0.88
(197)

0.88
(197)

1.10
(247)

1.07
(241)

1.07
(241)

1.24
(279)

1.24
(279)

1.24
(279)

Notes:
1.  Tests were conducted with the fastener point driven completely through the back side of the hot-rolled steel member.  This
was necessary to obtain proper gripping force.
2.  Fasteners should not be located less than 13 mm (1/2”) from the edge of steel.
3.  A minimum fastener spacing of 38 mm (1-1/2”) is necessary.
4.  Bearing strength based upon: 1.15(228 MPa)(Bearing Area) [1.15(33ksi)(Bearing Area)] for cold-formed steel.
5.  Capacities shown are for either shear or pullout.
6.  Values may not be increased by 1/3 for wind or seismic loads.
7.  ICBO uninspected values - Hilti/ICBO research #2388

Table 2-9:  Joist End Clip: Allowable Loads per fastener
Joist ThicknessClip Length

mm (in)

No. of screws in
Each Leg

(#10-16)

0.8879 mm
(0.0346”)

228 MPa (33 ksi)
kN (lbs)

1.146 mm
(0.0451”)

228 MPa (33 ksi)
kN (lbs)

1.438 mm
(0.0586”)

228 MPa (33 ksi)
kN (lbs)

152 (6) 3 1.50 (337) 2.23(501) 4.76 (1070)
203 (8) 4 2.14 (480) 3.17 (713) 6.77 (1523)
254 (10) 5 2.78 (626) 4.14 (930) 8.83 (1985)

Notes:
1.  Based on CCFSS technical bulletin vol. 2, no. 1 which outlines the proposed AISI specification
provisions for screw connections.
2.  F

y
 = 228 MPa (33 ksi) for 0.879 mm (0.0346”) sheets.  F

y
 = 345 MPa (50 ksi) for 1.438 mm

(0.0566”) sheets. F
u
 = 1.08F

y

3.  Allowable loads based on a factor of safety of 3.0.
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f.  Fasteners.  Information on Fasteners for Residential Steel Framing can be found in AISI
RG-933.

6.  USEFUL RELEVANT INFORMATION

a.  Beam Diagrams and Formulas

AISC Steel Construction Manual

b.  Material Weights

AISC Steel Construction Manual

c.  Software.  Listings of available cold-formed steel design software can be found through
the CCFSS http://www.umr.edu/~ccfss/ Technical Bulletin, Center for Cold-Formed Steel
Structures, University of Missouri Rolla.
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CHAPTER 3

SEISMIC DESIGN GUIDANCE FOR SHEAR WALLS (DIAGONAL STRAP SYSTEMS)

1. INTRODUCTION.  The design guidance presented here is tied directly to the 1997 NEHRP (FEMA
302 and 303), because this will form the basis of the 2000 International Building Code.  U.S. Army Corps
of Engineers, Seismic Design for Buildings, TI 809-04 is the general military standard for seismic design
of buildings, and this is also based on FEMA 302 and 303.  TI 809-04 supplements the FEMA 302 and
303 with additional guidance for military buildings that is primarily based on the 1997 NEHRP Guidelines
for the Seismic Rehabilitation of Buildings (FEMA 273 and 274).  These and other TI 809-04 guidance
that differ from the FEMA 302 and 303 are summarized in paragraph 2 of this chapter.  The basis for
unique seismic guidance presented here is provided in technical report found at the URL address:
http://owww.cecer.army.mil/techreports/wilcfstr.post.pdf , Development of Cold-Formed Steel Seismic Design
Guidance, U.S. Army Construction Engineering Research Laboratory.  Design guidance is also based on
the following references:

• Cold Formed Steel Design Manual, American Iron and Steel Institute, 1996 Edition.
• Manual of Steel Construction Load and Resistance Factor Design (LRFD), American Institute of

Steel Construction (AISC), 2nd Edition, 1994.
• Seismic Provisions for Structural Steel Buildings, AISC, 1997.
• Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers

(ASCE) 7-95, 1995.
• State-of-the-Art Report on Anchorage to Concrete, American Concrete Institute (ACI) 355.1R-91,

1991.

Unique guidance for cold-formed steel is included in this chapter, while guidance that remains unchanged
from FEMA 302 and other standards is included in Appendix C as indicated in the paragraphs that follow.
Appendix C also contains limited background on the development of the guidance provided in this
chapter.  The source of all guidance is referenced in the text.  Figure 3-1 gives a flowchart for seismic
design of cold-formed steel shear walls.  Appendix D presents an example problem showing the
application of Chapter 3 and Appendix C seismic design guidance.    An update to the spreadsheet,
http://owww.cecer.army.mil/techreports/wilcfsxl.post.pdf design program using the example problem is
available.

2. TI 809-04, SEISMIC DESIGN FOR BUILDINGS.  TI 809-04 is the military standard for the seismic
design of buildings, and it provides additional guidance primarily based on FEMA 273 and 274.
Additional guidance related to the design of cold-formed steel buildings is summarized as follows:

• Classification of Buildings:  Definitions of Seismic Use Groups (Table 4-1) and Seismic Design
Categories are expanded (Table 4-2a and 4-2b).  The Seismic Use Groups are used in TI 809-04
to define Performance Objectives.

• Ground Motion:  Ground Motion A is the FEMA 302 defined 2/3 site adjusted maximum
considered earthquake (MCE) levels.  TI 809-04 defines another ground motion level, Ground
Motion B, which is defined as ¾ of the same MCE levels.

• Performance Objectives:  TI 809-04 defines three performance levels: 1) Life Safety, 2) Safe
Egress, and 3) Immediate Occupancy defined in Table 4-3.  These levels are combined with the
two design motion levels to define performance objectives for each of the four seismic use groups
as described in Table 4-4.  These objectives are 1A (Life Safety), 2A, 2B and 3B.

• Minimum Analytical Procedures: Chapter 5 defines three analytical procedures and the minimum
procedure that must be used for each performance objective.   Linear analysis with  response
modification factor, R as described in FEMA 302 is used for performance objective 1A.  Linear
analysis may also be used for Performance Objectives 2A, 2B and 3B, but with a modification
factors, m for deformation controlled structural components or elements.

http://owww.cecer.army.mil/techreports/wilcfstr.post.pdf
http://owww.cecer.army.mil/techreports/wilcfsxl.post.pdf
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Figure 3-1. Flowchart for cold-formed steel shear panel seismic design.
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• Acceptance Criteria: Acceptance criteria for each performance objective are prescribed for each
analytical procedure in Chapter 6 and numerical values for each of the criteria are given in
Chapters 7 through 10.

3. STRUCTURAL DESIGN CRITERIA.  The basic lateral and vertical seismic-force-resisting systems
considered here are diagonal strap configurations (Panels A1, A2, and D1) in Appendix B.  These are
considered bearing wall systems.  The format of Table 5.2.2 of FEMA 302 is used in Table 3-1 to present
the response modification coefficient, R and deflection amplification factor, Cd.  These values are used to
calculate the base shear, and design story drift.  The system overstrength factor, Ω0 used in FEMA 302 is
not included here because shear panel overstrength is accounted for by Ω0QE in Equation C-16.  This is
the maximum lateral capacity of the shear panel based on the maximum estimated ultimate stress of the
panel diagonal straps.

The response modification coefficient, R in the direction under consideration at any story shall not exceed
the lowest value for the seismic-force-resisting system in the same direction considered above that story
excluding penthouses.  Other structural systems (dual systems) may be used in combination with these
cold-formed steel panels, but then the smallest R value for all systems in the direction under
consideration must be used for determining the loads applied to the entire structure in that direction.  Dual
systems must be used with caution, particularly if differences in stiffness result in interaction effects
(FEMA 302, 5.2.2.4.2) or deformation compatibility problems (FEMA 302, 5.2.2.4.2).  Another structural
system may be used in the orthogonal direction with different R values, and the lowest R value for that
direction only shall be used in determining loads in that orthogonal direction.

Table 3-1  Design Coefficients and Factors for Basic Seismic-Force-Resisting
Systems

System Limitations and
Building Height Limitations (ft)
by Seismic Design Category

Basic Seismic-
Force-Resisting

System

Response
Modification
Coefficient,

R

Deflection
Amplification

Factor, Cd

B C D E F
Bearing Wall Systems

Cold-Formed Steel
Shear Panels with
Diagonal Strapping

4 3½ NL NL 65 65 65

4. DEFLECTION AND DRIFT LIMITS.  The design story drift, ∆ shall not exceed the allowable story
drift, ∆a as obtained from Table 3-2 (FEMA 302, Table 5.2.8), for any story.  The design story drift shall be
computed as the difference of deflections at the center of mass at the top and bottom of the story under
consideration, as determined by Equation C-29 (FEMA 302, Eq 5.3.7.1).  For structures with significant
torsional deflections, the maximum drift shall include torsional effects.  All portions of the structure shall
be designed and constructed to act as an integral unit in resisting seismic forces unless separated
structurally by a distance sufficient to avoid damaging contact under total deflection, δx, as determined by
Equation C-29, (FEMA 302, 5.2.8).

Table 3-2  Allowable Story Drift, ∆∆a (mm or inches)
Seismic Use GroupStructure

I II III
Structures with diagonal strap

shear walls 0.020hsx
1 0.015hsx 0.010hsx

                                                       
1 hsx is the story height below level x.
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5. TORSION.  The distribution of lateral seismic forces shall take into account the effects of torsional
moment, Mt resulting from the location of masses relative to the center of rigidity (stiffness) of the lateral
force resisting frames in both orthogonal directions (FEMA 302, 5.3.5).  This torsional moment shall
include the effects of accidental torsional moment, Mta caused by an assumed offset of the mass.  This
offset shall be equal to 5 percent of the dimension of the structure orthogonal to the direction of the
applied seismic force.   Similar to the lateral seismic forces, the torsional moments, Mt are distributed
along the floors of the building according to the vertical distribution factor given in Equation C-26.

The torsional resistance comes from each of the shear wall panels, and the resistance from each panel is
proportional to the square of the distance from the center of resistance to the plane of the panel.  For a
given panel the additional shear force due to torsion, Qsi can be expressed as:

θρ=∆= isiisisi kkQ (Eq 3-1)

Where:
ksi = the shear stiffness of shear panel i, and is defined as follows:









+
=

22ssssi
WH

W
tbEnk (Eq 3-2)

∆i = the lateral in-plane shear deflection of panel i.
ρi = the distance from the center of resistance to panel i, perpendicular to the plane of the panel.
θ = the torsional rotation of the building at the floor level above the panel.
E = the modulus of elasticity of steel, equal to 200,000 MPa (29,000 ksi).
ns = the number of diagonal straps.
bs = the width of the diagonal straps.
ts= the thickness of the diagonal straps.
W = the overall panel width.
H = the overall panel height (see Figure 3-2 for a schematic panel drawing showing W and H).

Figure 3-2. Schematic of CERL cold-formed steel shear panel model.

The torsional moment resistance, Mtr, for all the shear panels is given by:
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θρ=ρ= ∑∑
==

si
2
i

n

1i
sii

n

1i
tr kQM (Eq 3-3)

Equation 3-3 shows that the torsional resistance from each panel is proportional to ρi
2ksi.  The total

torsional moment resistance, Mtr, is set equal to the Mt and the additional shear force due to torsion, Qsi is
calculated using Equations 3-1 and 3-3.  Note that the torsional rotation, θ in these equations does not
need to be solved for and can be treated as a constant.  Also the panel shear stiffness, ksi, is not needed
if all the panels can be assumed to be equal or if their relative stiffness can be determined.

6. COLD FORMED STEEL SEISMIC REQUIREMENTS

a.  Wind and Earthquake Loads.  The requirements of the 1996 AISI2, Section A5.1.3, shall be
modified as follows (FEMA 302, 8.5.1): “A4.4  Wind or Earthquake Loads  where load combinations
specified by the applicable code include wind loads, the resulting forces are permitted to be multiplied by
0.75.  Seismic load combinations shall be as determined by these provisions.”

b.  Boundary Members, Chords and Collectors.  All boundary members, chords, and collectors shall
be designed to transmit the specified induced axial forces (FEMA 302, 8.6.1).  Connections for diagonal
straps-to-column and columns-to-anchors and shear panel anchorage, and collectors shall have
adequate strength to account for the effects of material overstrength as indicated in this guidance.  The
pullout resistance of screws shall not be used to resist seismic forces (FEMA 302, 8.6.2).

c.  Shear Panel Anchors.  Shear panels shall be anchored such that the bottom and top tracks are not
required to resist uplift forces by bending of the track or track web (FEMA 302, 8.6.3).  Both flanges of
studs shall be braced to prevent lateral torsional buckling.

d.  Pretension of Diagonal Straps.  Provision shall be made for pretensioning or other methods of
installation of tension-only diagonal straps, to guard against loose straps (FEMA 302, 8.6.4).

e.  All Steel Design.  The guidance of FEMA 302, 8.6.5 for shear walls shall not be used and
configurations with plywood sheathing or oriented strand board are not permitted.  The following guidance
shall be used in place of the FEMA 302 guidance in section 8.6.5.

Shear panel design shall be based on the cold-formed steel shear design guidance presented here.  This
design requires that shear panels be adequately anchored at their top and bottoms to a floor diaphragm.
Shear panels in the two orthogonal directions must be anchored to the same diaphragm at each floor
level to tie the two orthogonal lateral load-resisting systems together.  Shear panels above the ground
floor must have shear panels in the same bay and direction at every floor level below them.

Using the following guidance, the diagonal straps are sized to resist the total horizontal loads at each floor
level as defined in Equations C-12 and C-13, based on trial shear panel locations and aspect ratios.
Then the greater loads defined in Equations C-17 and C-18 are used to size the shear panel columns.
Finally the panel connections and anchors are designed based on the guidance that follows.

                                                       
2 Specification for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute (AISI), 1996.
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7. DIAGONAL STRAP DESIGN.  The diagonal straps are designed to resist the seismic story shears, Vx

given in Equation C-27 that has been increased by the additional shear force due to torsion (Qsi in
Equation 3.1).  The shear panels shall be configured and diagonal straps sized so that the lateral shear
panel design strength, φt Qsy satisfies the following equation (see Equation C-34 in Appendix C).

six

n

1i
22

syssstsyt QV
WH

W
FtbnQ +≥























+
φ=φ ∑

=

(Eq 3-4)

Where:
φt = the resistance factor for tensile members (0.95),
n = the number of shear panels in the building frame for which the shear forces Vx and Qsi are

applied.
ns = the number of diagonal straps (panel faces with straps) in an individual panel.
Fsy = the design yield strength of the strap.

The number of shear panels, panel width, height, and strap size and strength shall be designed according
to Equation 3-4 to meet minimum lateral yield capacity.  All diagonal strap material must be ASTM A653
steel.  Diagonal straps may not use re-rolled steel, because the re-rolling strain hardens the material,
increasing material strength variability and reducing elongation (see USACERL Technical Report,
Chapter 4 for a discussion of this concern).

8. COLUMN DESIGN – Structural Tubing or Built-up from Studs.  The columns of the Panel A
configuration are built-up with cold-formed steel studs.  These studs must be oriented to form a closed
cross-section as shown on the Test Panel A1 and A2 drawings in Appendix B.  Individual studs must be
welded to each other with a weld thickness equal to the thickness of the studs.   The welds are
intermittent, with a length and spacing that will ensure composite behavior of the column.

Structural tubing column design (Panel D configuration - Drawing D1 in Appendix B) follows the same
procedure, but consists of a single member which is a closed section by itself.  The equations in this
guidance are used such that the number of studs making up this column is one.

a.  Column Applied Loads.  Loads applied to the columns are defined based on Equation C-17 (TI
809-04, Equations 4-2 and 4-6), where the effects of gravity load and seismic forces are additive and
diagonal strap overstrength is accounted for.   Only that portion of gravity loads applied to the tributary
area of the shear panel columns are included in the design of these columns.  However, the full horizontal
seismic force, Ω0QE applied to the shear panel and resisted by the diagonal straps, will add a vertical
component to the columns, increasing axial load.  This horizontal load is based on the actual designed
area of the diagonal straps as defined in Equation C-16.  The total column axial load at the maximum
ultimate stress in the diagonal straps, Pvumax is:












+
+=

22
sssmaxsu

max
maxvu

WH

H
tbnF

2

GL
P (Eq 3-5)

Where:
GLmax = the maximum gravity load per shear panel, i.e., from (1.2 + 0.2SDS)D + 0.5L + 0.2 S, in

Equation C-17.
Fsumax = the maximum estimated ultimate stress in the diagonal straps, which equals to 1.5 Fsu for

ASTM A653 Grade 33 steel (Fsu = 310 MPa and 45 ksi) and 1.25 Fsu of Grade 50 steel
(Fsu = 448 MPa and 65 ksi).

b.  Column Axial Capacity.  Column capacity is determined based on AISI provisions.  The design
strength, P shall be determined based on the AISI guidance (Section C4 Concentrically Loaded
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Compression Members).  This guidance, applied to columns built-up with cold-formed steel studs or
individual structural tubing members, is summarized in Appendix C (Paragraph C13).   Columns shall be
designed such that their design strength, P (Equation C-35) exceeds the total axial applied load, Pvumax.

c.  Column Bending Load and Composite Behavior.  The column anchor design provisions
developed later in this guidance will create a moment connection.  The primary purpose of the anchor
design is to resist shear and uplift forces.  However, this anchor design will also allow the columns to act
as a moment frame, providing limited structural redundancy and widening of the hysteretic load deflection
envelopes of the shear panel.  This will allow the panels to absorb more energy under cyclic seismic
loading conditions.  The columns built-up from studs must be designed to act as a composite cross
section in order to provide this moment capacity.  This will require welding between the studs that will
provide the shear transfer needed to develop the maximum moment in the columns.  When one diagonal
strap is in tension, the full gravity load on the shear panel may be carried in a single column, with the
other column having no axial load.  The maximum moment in a column will occur when it has no axial
load.  Therefore the welds shall be designed for the full moment capacity of the columns.  This design
requirement will allow the shear panel columns to continue providing bending resistance beyond the
lateral yield deflection of the columns.  These welds shall resist the maximum shear between the studs,
which will be between the studs closest to the column neutral axis.  This shear, q is defined as follows:

c

c

I

QV
q = (Eq 3-6)

Where:
Vc = the maximum column shear due to column moment only.
Q = the moment of the column cross-sectional area on one side of the critical weld about the

critical weld plane.
Ic = the moment of inertia of the column due to bending in the plane of the shear panel.

The maximum column shear, Vc due to the maximum column moment Mc only is determined as
follows:

Hc

IF2

H

M2
V ccyc

c ==  (Eq 3-7)

Where:
H = the panel height
Fcy = the yield strength of the column.  This strength is not increased for column material

overstrength because weld failure is controlled by the column material strength, so that any
material overstrength would result in a proportionately greater weld strength.

c = the distance to the column neutral axis to the extreme fiber in the plane of the shear panel.

The moment of the column cross-sectional area on one side of the critical weld about the critical weld
plane, Q is defined as follows:

∫ ==
A

yAydAQ (Eq 3-8)

Where:
A = the area of column cross-section on one side of the critical weld plane closest to the column

neutral axis.
y  = the distance from the neutral axis of the column cross-sectional area on one side of the

critical weld plane to the critical weld failure plane.
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Built-up columns are fabricated by welding individual studs together to form a closed cross-section, using
flare V-groove welds.  The same weld size and spacing shall be used between all studs in the built-up
column.  These welds are design according to AISI (Section E2.5 Flare Groove Welds), assuming double
shear.  The maximum spacing between centers of intermittent welds, smax is determined as follows:

q
L

Ft5.1s cucGmax φ=  (Eq 3-9)

Where:
φG = the resistance factor for flare grove welds, equal to 0.55.
tc = the stud thickness of the built-up columns.
Fcu = the ultimate strength of the column steel.
L = the length of intermittent grove welds.
q = the maximum shear determined in Equation 3-6.

Intermittent welds shall be made at both the top and bottom ends of the columns, regardless of the
maximum center-to-center spacing, smax.

d.  Column Combined Axial and Moment Capacity.  The combination of axial load and bending
shall be evaluated using a modification to AISI guidance (C5.2.2 Combined Compressive Axial Load and
Bending – LRFD Method).   The combination of axial and moment on the column shall be evaluated
based on the following interaction equation (modification of AISI Equation C5.2.2-2):

0.1
M
M

AF
P

I
nx

a

ccy

maxvu ≤+= (Eq 3-10)

Where:
Pvumax = the applied axial load, defined in Equation 3-5.
Ac = the nominal column cross-sectional area.
Ma = the applied moment at maximum estimated strap yield strength, defined in Equation 3-11.

This equation conservatively assumes the column is fully fixed at its top and bottom by the
panel anchors.  This moment is also conservatively based on the maximum panel lateral
deflection at which the diagonal strap will yield.  This moment includes the column bending
and P-delta effect of axial load.  Still, this moment will be less than the column moment with
no axial load (paragraph 3-8c). The applied moment, Ma is defined as follows:

maxsymaxvu2

maxsyc
a P

H

EI6
M δ+

δ
= (Eq 3-11)

Where:
δsymax = the maximum estimated lateral panel deflection at the maximum estimated yield strength

of the diagonal straps, Fsymax and is defined as follows:





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F 22
maxsy

maxsy (Eq 3-12)

Where:
Fsymax = maximum estimated yield stress of the diagonal straps, equal to 2Fsy for Grade 33 and

1.5Fsy for Grade 50 steel.
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Mnx = the column gross cross-section nominal moment capacity, and this is defined as follows
(modification of AISI Equation C3.1.1-1):









−

=
ch

I
FM

c

c
cynx (Eq 3-13)

Where:
hc = the width of the column in the plane of the shear panel.
c = the distance from the column neutral axis to the extreme fiber.

e.  Column Shear Capacity.  The trial column design must be checked for shear capacity.  The
diagonal straps fasten to the columns near their connection to the tracks and column anchor.  Therefore
the column must either have adequate shear capacity for the maximum horizontal seismic force, Ω0QE

applied to the shear panel, or the column shear capacity must be augmented with other components.
The column shear design strength, VC shall be determined based on AISI guidance (Section C.3.2,
Strength for Shear Only).  This guidance, applied to columns built-up with cold-formed steel studs or
individual structural tubing members, is summarized in Appendix C (Paragraph C14).   For columns built-
up with studs, the maximum stud flange width over thickness, (h/t)max is defined as follows:

cy

v
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


(Eq 3-14)

Where:
h = the depth of the flat portion of the column web, which equals the stud flange width.
tc= the column web thickness, which equals the stud thickness.
kv = the shear buckling coefficient, which equals 5.34.

For studs with a flange width of 50-mm (2 inches) this requires a minimum stud thickness of 0.77-mm (30
mil or 20 gauge) for 33 ksi steel and 0.95 mm (37 mil or 18 gauge) for 50 ksi steel.

Columns have insufficient shear capacity by themselves, and require additional shear capacity from their
anchorage detail (see paragraph 3.10a for anchorage shear design guidance).

9. CONNECTION DESIGN.

a.  Connection Design Assumptions and Applied Loads.  This paragraph provides connection design
assumptions that define loading and load path issues for cold-formed steel shear panels.  These
assumptions apply to the diagonal strap-to-column connections.  These loads are based only on the
maximum lateral force, Ω0QE.  This force results from the right-hand term in Equation C-18, Ω0QE, which
accounts for diagonal strap material overstrength.  The maximum estimated ultimate force in the diagonal
straps (in the axis of the straps), Psu, is:

sssmaxsusu tbnFP = (Eq 3-15)

The diagonal strap-to-column connection shall be designed to resist the force defined by Equation 3-15.

Panel design will require the use of angle section anchors as described under panel anchors  (pargraph
10), because of the shear transfer requirements.  This anchor will also transfer loads between the column
and base or top beam, or floor slabs, thereby eliminating the need for load transfer with a column-to-track
connection.  In low seismic zones it may be possible to transfer the shear forces with a column-to-track
connection only, without anchors.  However, it is considered more reasonable to use fewer shear panels
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rather than many with low lateral load capacity.  Therefore all shear panel design guidance presented
here shall require the use of anchors.  Anchor design is presented later in this document (Paragraph 10).

b.  Screwed Fastener Connection Design.  Self-tapping screwed connection capacity definition
shall follow AISI guidance (Section E4 Screw Connections).  Screws shall be installed and tightened in
accordance with the manufacturer’s recommendations.  Screw connections loaded in shear can fail in
one mode or in combination of several modes.  These modes are screw shear, edge tearing, tilting and
subsequent pullout of the screw, and bearing of the joined materials.  The commentary of the AISI
Specification (E4.3) gives further explanation and illustration of these modes of failure.  The AISI
provisions focus on the tilting and bearing modes of failure.  Two cases are given depending on the ratio
of the connected member thicknesses.  Normally the head of the screw will be in contact with the thinner
material, t1.  However, when both materials are the same thickness or the thicker member is in contact
with the screw head, tilting becomes a more critical mode of failure.  The AISI Section E4 guidance on
design shear strength per screw, Ps applied to diagonal strap-to-column screw connections is
summarized in Appendix C (Paragraph C15).  The modes of failure expressed in Equations C-48 through
C-52 are defined alongside the equations.

Minimum spacing guidance (AISI E.4.1) requires that the distance between centers of fasteners shall not
be less than 3d, where d is the nominal screw diameter.

Minimum edge and end distance guidance (AISI E.4.2) requires that the distance from the center of a
fastener to the edge of any connected part shall not be less than 3d.  If the connection is subjected to
shear force in one direction only, the minimum edge distance shall be 1.5d in the direction perpendicular
to the force.

Finally, the minimum number of screws required at each diagonal strap-to-column connection, nscrews is
calculated as follows:

ss

su
screws Pn

P
n ≥ (Eq 3-16)

The nominal shear strength of the screws shall be determined based on manufacturer’s data (AISI
E4.3.2), which must be based on tests according to AISI Section F1(a).  This nominal shear strength of
approved screws must not be less than 1.25Pns where Pns is defined by Equations C-48 through C-52.

c.  Design Rupture Strength.  The design shear strength along a potential shear rupture plane
between fasteners of connected members, V shall be determined as below (AISI E5 Shear Rupture,
Specification and Commentary, AISC J4 Design Rupture Strength).  The AISI commentary states that
their shear rupture provisions are based on AISC provisions.  The AISI provisions conservatively neglect
the greater strength that AISC allows for the tensile rupture plane.  The guidance below adds the greater
strength allowed by AISC for this tensile rupture plane.

nvuv AF6.0V φ= (Eq 3-17)

Where:
φv = the shear rupture resistance factor, equal to 0.75.
Fu = the ultimate strength of the member being evaluated.
Anv = the net area subjected to shear along the rupture plane being considered.

The design tensile strength along a potential tensile rupture plane between fasteners of connected
members, T shall be determined as follows:

ntut AFT φ= (Eq 3-18)
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Where:
φt = the tensile rupture resistance factor, equal to 0.75
Ant = the net area subjected to tension along the rupture plane being considered.

The shear and tensile rupture strength are based on the diagonal strap ultimate strength of the member in
the joint being evaluated.  The maximum applied load on this joint is based on the yield strength of the
same member, Psy.  This will be much less than the maximum estimated strap axial force, Psu.  The
maximum force in the members is not critical, but rather the minimum ratio of Fu/Fy because the rupture
strength capacity is dependent on Fu and the maximum applied force is dependent on Fy.  This guidance
requires that ASTM A653 material be used for the straps and the minimum Fu/Fy ratio for Grade 33 and
Grade 50 material is 1.36 and 1.303, respectively.  These minimum ratios equate to yield, Fy and ultimate
strengths,  Fu of Grade 33 and Grade 50 material, such that Fy33 = 228 MPa (33 ksi), Fu33 = 310 MPa (45
ksi), Fy50 = 345 MPa (50 ksi), and Fu50 = 448 MPa (65 ksi).  Therefore the strap yield strength, Psy may be
defined simply based on the yield strength of these materials.  This requirement is expressed as follows:

sys Pn)TV( ≥+
(Eq 3-19)

Where:

sssysy tbnFP = (Eq 3-20)

When the strap-to-column rupture strength is evaluated based on Equation 3-19, the resistance factors in
Equations 3-17 and 3-18 may be increased to 1.0, because of the ASTM minimum material requirement
on Fu/Fy stated above.

d.  Welded Connection Design.  Welded design shall follow AISI guidance (Section E2 Welded
Connections).  This guidance covers connections of members in which the thinnest member is 0.18
inches or less.  Arc welds shall be made in accordance with AWS D1.34 and its commentary.  Resistance
welds shall be made in accordance with the procedures in AWS C1.1 or AWS C1.3.

Welded diagonal strap-to-column connections will require fillet welds (AISI E2.4).  The welds at the sides
of the straps will be loaded in the longitudinal direction, and welds at the ends of the straps will be loaded
in the transverse direction.  The weld thickness should be equal to the thickness of the strap material.
Ultimate failure of fillet welded joints has usually been found to occur by the tearing of the plate adjacent
to the weld.  The higher strength of the weld material prevents weld shear failure, therefore, this guidance
is based on sheet tearing.5  Fillet weld design for diagonal strap-to-column connections is summarized in
Appendix C (Paragraph C16).

The fillet weld longitudinal and transverse shear strengths are based on the ultimate strength of the
thinner member (normally diagonal strap) of the joint.  The maximum applied load on this joint is based on
the yield strength of the same member, Psy.  The maximum force in the members is not critical, but rather
the minimum ratio of Fu/Fy because the rupture strength capacity is dependent on Fu and the maximum
applied force is dependent on Fy.  This guidance requires that ASTM A653 material be used for the straps
and the minimum Fu/Fy ratio for Grade 33 and Grade 50 material is 1.36 and 1.306, respectively.
Therefore, the strap yield strength, Psy shall be defined simply based on the yield strength of these
materials.  This requirement is expressed as follows:

                                                       
3 See AISI Dimensions and Properties for use with the 1996 AISI Cold-Formed Steel Specifications, ASTM Specifications for
Referenced Steels.
4 American Welding Society (1989), Structural Welding Code - Sheet Steel, ANSI/AWS D1.3-89, Miami, FL 1989.
5 AISI Commentary, E2.4.
6 See AISI Dimensions and Properties for use with the 1996 AISI Cold-Formed Steel Specifications, ASTM Specifications for
Referenced Steels.
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 sysTL Pn)PP( ≥+ (Eq 3-21)

10.  PANEL ANCHORS.  Panel anchors must be installed on both sides of the shear panel columns
because the columns by themselves have inadequate shear capacity.  Furthermore, if the column were
simply fastened to the track, the track would be loaded in bending, due to uplift.  The track is very weak in
bending and this would violate the guidance stated in Paragraph 6c.  Therefore, anchors consisting of
angle iron sections shall be welded to both sides of the column at both the top and bottom of the columns
to provide the required panel anchorage.  Loose steel plates are laid over the horizontal portion of the
angle sections.  The angles and plates shall be drilled with through holes and anchored to the supporting
diaphragm above and below the shear panel using embedded anchor bolts.  See Appendix D (Figures D4
through D9) for examples of this anchor configuration.

a.  Anchor Shear Capacity.  Columns have insufficient shear capacity by themselves, and require
additional shear capacity from their anchorage detail.  This will require the installation of angle iron
anchors on both sides of the columns, such that one leg of the angle extends beyond the critical shear
plane.  For screwed fastener connections, the critical shear plane is along the horizontal row of screws
closest to the track in the diagonal strap-to-column connection.  For the welded connections, the critical
shear plane is along the strap-to-column weld near the track.  The angle iron anchor shear design
strength, VA for a single angle is defined as follows:

AcAyvA tbF6.0V φ= (Eq 3-22)

Where:
φv = 1.0.
FAy = the anchor angle iron yield strength.
bc = the width of the angle, which equals the out-of-plane width of the column.
tA = the thickness of the angle.

The total design shear strength, VT must exceed the maximum shear panel horizontal seismic force Phumax

(Ω0QE).  All anchors are made up with two angles, on either side of the column, so that VT may be
expressed as:

maxhuACT PV2VV ≥+= (Eq 3-23)

Where:
VC = the column shear capacity determined in according to Equation C-46 in Appendix C.












+
=Ω=

22
sssmaxsuE0maxhu

WH

W
tbnFQP (Eq 3-24)

b.  Anchor Angle and Plate Design.  The most critical load condition for anchors is when the
effects of gravity load and seismic forces counteract each other.  This load condition is expressed by
Equation C-18.

The selected angle and plate anchors shall resist the applied shear and uplift forces.  These anchors will
also provide limited moment resistance.  The angles and plates will yield in flexure between the anchor
bolts and bend in the angle, but will not fail in a brittle manner.  This limited moment resistance will slightly
widen the hysteretic envelope in the load deflection performance of the panel.  The angles and plates can
yield significantly through many cycles with no loss of shear and uplift resistance (some loss of moment
resistance).  The maximum weld thickness to the column shall be used, which is based on the thickness
of the column material, as indicated in Table 3-3.  The panel anchors shall be constructed using angle
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sections with a thickness equal to the maximum permitted based on the column-to-anchor weld thickness
(see Table 3-4).

The limitation on angle thickness will cause the angle to yield in bending at the angle corner, so that it
provides little resistance to uplift by itself.  Uplift resistance shall be increased by adding a plate over the
horizontal leg of the angle.

Table 3-3.  Maximum Column-to-Anchor Weld Thickness.7

Column Material Thickness, tc Maximum Weld Thickness, tw

tc < 6 mm (¼ inch) Tw = tc
tc ≥ 6 mm (¼ inch) tw = tc – 1.5 mm (tc – 1/16 inch)

Table 3-4.  Maximum Angle Thickness Based on Column-
to-Anchor Weld Thickness.8

Weld Thickness, tw Maximum Angle Thickness, tA

3 mm (1/8 inch) 6 mm (1/4 inch)
5 mm (3/16 inch) 13 mm (1/2 inch)
6 mm (1/4 inch) 19 mm (3/4 inch)

8 mm (5/16 inch) 29 mm (1-1/8 inch)9

The column-to-angle weld design strength, PA shall exceed the total uplift force applied to one angle at
one side of the column due to uplift and bending.  This is expressed as follows:

GTAM
maxvy PPPP
2

P
+=≤+ (Eq 3-25)

Where:
PA = the total vertical design capacity of the column-to-angle weld
PT = the design strength of the transverse loaded fillet weld at the horizontal column-to-angle

weld (Equation C-56)
PG = the design strength of the longitudinal loaded flare bevel grove weld at the vertical column-

to-angle welds at the corner of the columns.  The design strength for this column-to-angle
weld shall be determined based on AISI guidance (Section E2.5 Flare Grove Welds).  The
application of this guidance to the design of column-to-angle welds is summarized in
Appendix C (Paragraph C17).

Pvymax = the net anchor vertical load at the maximum yield stress in the diagonal straps,
expressed by:

2

GL

WH

H
tbnFP min

22
sssmaxsymaxvy −











+
= (Eq 3-26)

Where:
GLmin = the minimum gravity load per shear panel, i.e., (0.9 - 0.2SDS)D in Equation C-18.
PM = the uplift force capacity per anchor angle, beyond Pvymax/2 available to resist moment is

determined by Equation 3-27.  This assumes the anchor bolts are sufficiently tightened to
provide a moment restraint.

                                                       
7 AISC Load and Resistance Factor Design (LRFD) Specification, 2nd Edition, 1994, Section J2b.
8 AISC LRFD, Table J2.4
9 Maximum thickness of standard angles.
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= (Eq 3-27)

Where:
MA = the plastic moment capacity of the angle and plate resting over the horizontal leg of the

angle
db = the distance from the plate edge where the angle corner begins to the critical bending plane

in the plate.  The critical bending plane is at the edge of the anchor bolt nut(s) nearest to the
columns.

The plastic moment capacity of the angle and plate, MA is calculated as follows:

( )2
p

2
A

c
AybA tt

4
b

FM +φ= (Eq 3-28)

Where:
φb = the bending resistance factor, equal to 0.90.
FAy = the yield strength of the angle and plate.
bc = the length of the angle, which equals the anchor width and out-of-plane width of the column.
tA = the thickness of the angle.
tp = the thickness of the plate.

The distance from the plate edge to the critical bending plane, db is determined as follows:

2
W

kdd cb −−= (Eq 3-29)

Where:
dc = the distance from the center of anchor bolts to the column face.
k = the distance from the corner of the angle to the flat portion of the angle legs (from AISC

LRFD, Dimensions and Properties of Structural Shapes).
W = the width across flats of the anchor bolt nut(s).  This dimension is given in AISC LRFD,

Volume II Connections, Table 8-2, Dimensions of High-Strength Fasteners.

The column moment connection capacity, Mc is defined as follows:

)kth(PM AcMc ++= (Eq 3-30)

Where:
hc = the depth or in-plane width of the column.

A portion of this moment is used to resist the moment created by the eccentric loading of diagonal strap-
to-column connection with respect to the center of the column anchor, PsymaxLs.  The angle uplift capacity
that remains to resist column bending, Pcb shall be greater than zero and is determined as follows:

kth

LPM
P

Ac

smaxsyc
cb ++

−
= (Eq 3-31)
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Where:
Psymax = the maximum yield strength of the diagonal strap(s) in the shear panel, in the axis of the

strap.  This is determined as follows:

sssmaxsymaxsy tbnFP = (Eq 3-32)

Ls = the diagonal strap eccentricity equal to the distance from the center of the diagonal strap-to-
column connection to the center of the column-to-anchor connection, perpendicular to the
axis of the diagonal strap.

c.  Anchor Bolt Design.  The anchor bolts that fasten the column anchors to the reinforced
concrete beam or slab are next designed.  The same detail used in the anchors at the base of the column
shall be used in the anchor at the top of the column.  The anchor bolts shall be sized based on the bolt
shear strength, Pv tensile strength, Pt and cone failure design strength, Pc.  The anchor bolt shear design
strength, Pv shall exceed the applied shear load per bolt, PhAB.  This is expressed as follows:

AB

maxhu
hABv n

P
PP =≥ (Eq 3-33)

Where:

2
ABvtvv d

4
FP

π
φ= (Eq 3-34)

nAB = the number of anchor bolts in the anchor on both sides of the column
φtv = the tensile and shear resistance factor (0.7510).
Fv = the nominal shear strength of the anchor bolts.11

dAB = the diameter of the anchor bolt.
Phumax = the maximum shear panel horizontal force defined by Equation 3-24.

The anchor bolt-tensile design strength, Pt shall exceed the applied tensile force per bolt, PtAB. The
anchor bolt tensile strength, Pt

12
 is determined as follows:

2
ABttvt d

4
FP

π
φ= (Eq 3-35)

Where:
Ft = the nominal tensile strength of the anchor bolts determined by the minimum value given in

AISC LRFD, Tables J3.2 (Design Strength of Fasteners) and J3.5 (Tension Stress Limit (Ft)
for Fasteners in Bearing-type Connections.  The value of fv used in Table J3.5 is determined
as follows:

2
AB

hAB
v

d
4

P
f

π
= (Eq 3-36)

                                                       
10 AISC LRFD, Table J3.2, Design Strength of Fasteners.
11 AISC LRFD, Table J3.2, Design Strength of Fasteners.
12 American Concrete Institute (ACI), Manual of Concrete Practice, Part 3, State-of-the-Art Report on Anchorage to Concrete – ACI
355.1R-91, 1991, equation 3.1.
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The applied tensile force per anchor bolt, PtAB is calculated as follows:

)
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+
= (Eq 3-37)

The anchor bolt cone failure design strength, Pc shall exceed the applied tensile force per bolt, PtAB.  The
anchor bolt cone failure design strength, Pc is determined based on the guidance in ACI 355.1R-91.13

The applications of this guidance to anchor bolt design for shear panels is summarized in Appendix C
(Paragraph C18).   Appendix C (Paragraph C18) also defines the minimum edge distance for anchor bolts
based on ACE 355.1R-91.

                                                       
13 ACI 355.1R-91, Equation 3.2.
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CHAPTER 4
MASONRY VENEER/STEEL STUD WALLS

(NONBEARING CONSTRUCTION)

1.  INTRODUCTION.  This document defines the criteria to be used when designing curtain wall
masonry veneer on steel studs.  These walls are to be designed to resist out-of-plane lateral
loads due to wind and seismic forces.  Also, the wall system must collect, direct and remove
water from the wall cavity to properly control moisture, prevent efflorescence, and control
corrosion of the steel system.  These curtain wall steel stud systems will not carry building dead
or live loads, nor provide lateral resistance to the building system.

2.  GENERAL DESCRIPTION OF WALL SYSTEM.  This wall system consists of a masonry
veneer exterior wythe connected by anchors to a steel stud backup wall.  The steel studs will be
mechanically braced until the sheathing and wallboard are placed on the studs.  Sheathing is
placed on the cavity face of the stud and the wallboard material is placed on the inside face of the
studs.  A cavity space is provided between the masonry veneer and the steel stud wall to allow
moisture to migrate down the inside face of the cavity, brace the masonry veneer laterally and
transfer the horizontally applied loads to the steel studs.  The masonry wythe will be isolated on
three sides to assure that it will only carry its own weight.

3.  REQUIREMENTS FOR WALL COMPONENTS AND DETAILS.  See Appendix G for typical
Masonry Veneer / Steel Stud details.

a.  Masonry Wythe.

(1)  Masonry Units.  Dimensional and physical requirements of the masonry units
are given in TM 5-809-3/NAVFAC DM-2.09/AFM 88-3, Chapter 3.  Masonry units used in
veneer walls will be solid.

(2)  Mortar.  Four types of mortar are specified in ASTM C270, they are M, S, N,
and O.  While Types S and N may be used for masonry veneer systems; Type S mortar
has higher strength and good workability and can be used above and below grade, Type
N has a lower strength, better workability is more water tight and can only be used above
grade.  The lower strength of Type N mortar allows cracking in the masonry wythe at
relatively low load levels.  Masonry cracking will result in more uniformly distributed
anchor forces.  Conversely, vertical beam action of the uncracked masonry wythe causes
nonuniform distribution of loads to the wall anchors.  Those wall anchors near the top of
the uncracked masonry wythe  have much higher loads than those in the lower half of the
wythe.  Type S mortar is recommended for the design of masonry veneer steel stud
systems.  Two strength properties of mortars are measurable: the bond strength in
accordance with ASTM C 1072 and the compressive strength in accordance with ASTM
C 780.  Of these two strengths bond is more important in veneer walls and compression
is more important in bearing walls.  Type S mortar has the highest compressive and bond
strengths and can be achieved with either portland cement-lime or masonry cement.
However, since masonry cements include premixed workability and air-content additives
the bond strengths are reduced.  In order to achieve good bond strengths the maximum
air-content of the cement must be limited to 12 %.  Since every manufacturer of masonry
cement uses different additives and a different air-content, care should be used when
specifying masonry cements for veneer walls.  To assure a bond strength comparable to
a portland cement lime mortar, a comparative bond strength test between the masonry
cement proposed for the job and a corresponding type of portland cement mortar needs
to be completed to demonstrate equivalent or better bond and compressive strengths for
the masonry cement mortars.  The contractor will be required to perform the ASTM C
1072 and C 780 tests on their proposed mortars.  Masonry units for the bond strength
test will be the same as proposed for the project.
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(3)  Masonry Base Details.  The base of the masonry wythe must be placed on a
shelf angle or a foundation ledge that is lower than the base channel of the steel stud wall
by at least 102 mm (4 “).  The width of this shelf angle or a foundation ledge will include
the width of the masonry wythe and the cavity.  This width will not be less than two thirds
of the unit thickness plus the minimum air space.  Masonry units set on shelf angles may
use a formed lip to reduce the depth of the horizontal joint that is created at the shelf
angle line.

b.  Steel Studs and Framing.  Designers specifying cold-formed studs and framing will
use a minimum base metal thickness of 1.21 mm (0.0478 “) and not refer to the metal thickness
as 1.146 mm (0.0451”).  While the base metal thickness is to be specified to match the design,
designers can use table 1-1 as a guide to selecting commonly referred base metal thickness.
Designers should be aware that the minimum delivered thickness specified for steel studs will be
no less than shown in table 1-1 when materials are specified to the minimum design thickness
and delivered in accordance with AISI.  The minimum depth of members will be 89 mm (3-1/2 “)
and the minimum flange width of 35 mm (1-3/8 “) will have a minimum return lip of 6.4 mm (1/4 “).
Shop drawing submittals will need to present the calculations that show the effective flange, with
the return lip provided.  The actual required stud depth, thickness and spacing will be determined
prior to completion of the contract documents.  In some cases, the use of a minimum stud depth
of 152 mm (6”) yield a more efficient design.  Steel studs and framing will be hot-dipped
galvanized metal with a minimum ASTM A 653, G60 coating.

(1)  Welding.   Welding of steel studs requires the use of qualified welders
experienced in the welding of cold-formed steel.  When welding is used, the contractor
needs to provide Qualification documents for each welder working on the project.
Welded connections to steel framing members will be touched-up with zinc-rich paint
after welding.  Normally welded connections are not required in curtain-wall construction
but may be used for attachments.

(2)  Connections.  Connections of studs to runners and other framing members
will be made with screws or welds.  When the thickness of the thinner connected parts is
less than 4.8 mm (3/16 “) the capacity of the connected parts will be in accordance with
AISI.   For bolted connections when the thickness of the thinner material is equal to or
greater than 4.8 mm (3/16 “) use AISC.  Normally the minimum top and bottom channel
connections in curtain-wall construction will require a single #10-16 self-drilling, self-
tapping screw in each flange of the bottom runner for either system and the top channel
of the double track system.  Welding of studs may be used in lieu of screws or bolts.
Slide clip connections will be used when parapets extend above the roof line of the
structure.  These slide clips connectors need to be welded to a structural element and the
details and the capacity of the manufacturers system will need to be included in the shop
drawing review.  The minimum edge distance of shot-in anchors for top and bottom
runners to concrete is 76 mm (3 “) and the minimum fastener spacing is 102 mm (4 “).
Contract plans will show anchorage details of the steel studs and other framing members
to the building structural system, and the extra steel stud wall framing members required
around openings.  The required strength capacities of framing weld and screw
connectors will be in accordance with ML/SFA 540-87 and ML/SFA 920-91.

(3)  Openings.   Window and door frames will be attached to the steel stud
system, not the masonry veneer.

(4)  Top Track and Bottom Runner.   A single track or double track top (slip joint)
connection will be used at the top of stud walls to permit the vertical movement of the
structural framing system to prevent the loading of the steel studs.  Both flanges of the
steel stud will be attached to the inside top channel for the double track system and the
bottom runner of either system.  Mechanical bracing of the single track systems should
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be installed in addition to support for all studs.  This brace will be placed 305 to 457 mm
(12 to 18 “) from the bottom of the top channel track.

(5)  Parapets.   When parapet walls extend above the roof line a slip clip
connection will be used to allow for structural deflections without loading the steel stud
system.

c.  Sheathing.  Fire and eater resistant gypsum board sheathing encased in water-
repellent paper on both sides and on the long edges will meet the requirements of ASTM C 79.
Other materials may be used as sheathing when supported by satisfactory performance data.  All
gaps in the sheathing resulting from cuts, corners, joints and machine end cuts of the sheathing
and all joints at the interface of the sheathing with dissimilar materials such as floor slabs, doors,
windows, and other locations where the water-resistant membrane terminates will be taped or
filled with an exterior rubber-based caulk.  The base detail of the exterior sheathing will be
designed to resist water infiltration and the caulking will be applied to form joints that are
complete and continuous.  Enough connections of the sheathing to the steel studs to provide
lateral support for the studs in the direction parallel to the plane of the wall will be required.  All
screw attachments through the exterior sheathing must resist air and water infiltration.

d.  Veneer Anchors.  Veneer anchors will be attached through the sheathing to the steel
studs.  All steel components of anchors will be stainless steel or hot-dipped galvanized steel.
Anchor wires will be a minimum of 4.8 mm (3/16 “) diameter.  There will be one anchor for each
0.19 m2 (2 ft2) of wall area and anchors will be spaced no further apart than 610 mm (24 “).  The
load-deflection stiffness criteria of each veneer anchor, applies to direct loads in both tension and
compression, and will be not less than 350 N/mm (2000 lbs/in).  The design load of the anchor
will be the controlling wind load on the stud tributary width times one-half the vertical span of the
stud.  The controlling wind load will be the lesser of the design wind load or the wind load that
causes masonry cracking.   This load will then be used to calculate the required anchor capacity.
Anchors will have a maximum “play” or not more than 1.59 mm (1/16 “).  Synthetic rubber
washers will be used under tie connector plates.  A clutch torque slip screw gun will be used to
eliminate stripping of threads.  Additional anchors will be installed within 305 mm (12 “) of the free
edges of veneer panels and at the edges of wall openings at the normal spacing.  Additional
anchors required around openings will be detailed on the contract drawings.

e.  Fasteners.  Screw connectors for stainless steel anchors will be stainless steel.
Screws for galvanized anchors will be hot-dipped galvanized.

f.  Moisture Barrier.  A water-resistant membrane will be placed over the exterior
sheathing.  The membrane will be 67 N (15 lbs) roofing felt or similar material, such as: “Tyvek”
building wrap by Dupont or “Barricade” building wrap by Simplex.  The barrier material will be
shingled with each sheet lapping over the sheet below with a minimum 152 mm (6”) lap.  Sheets
will be lapped a minimum of 152 mm (6”) at vertical joints.  The moisture barrier must not be a
vapor barrier that will trap water in the stud space of the wall.

g.  Vapor Retarder.  A 0.15 mm (6-mil) vapor retarder as required in the ROUGH
CARPENTRY guide specification will be provided on the warm side of the insulation.  In most
geographical areas the vapor retarder will be located between the interior wall board material and
the face of the steel studs.  In hot humid areas of the United States including the Gulf coast,
Florida, coastal Georgia, North Carolina, South Carolina and Virginia, the vapor retarder should
be located between the exterior sheathing and the steel studs.  Check local practice and the
recommendations for the installation of insulation and vapor retarders at the project location.  The
building designers should perform a condensation analysis of the wall system used to determine
the dew point location within the wall were condensation might be expected occur.

h.  Flashing.  Copper or stainless steel through-wall flashing as required in the SHEET
METALWORK, General guide specification will be used.  Flashing must be designed, detailed
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and constructed so that all water entering the cavity is directed out through weep holes.  Ends
and sill flashing must be lapped and sealed at joints.  Ends will be turned up at sills and heads.
Flashing must also be turned up behind the moisture barrier a minimum of 152 mm (6”) and will
be attached to the sheathing.  Flashing must extend to the exterior face of the masonry wall.
Weep holes as described herein will be provided.

i.  Shelf Angles.  Shelf angles will be hot-dipped galvanized structural steel members.
Angles will be provided in segments, approximately 3.1 m (10 ‘) in length, with gaps between
segments.  Shelf angles will be detailed to allow enough gaps for thermal expansion and
contraction of the steel in angle runs and at building corners.  Corners of buildings will have
corner pieces with each leg  no less than four 1.2 m (4 ’) in length where possible.  Any areas that
are welded will be touched-up with a zinc-rich paint.

j.  Cavity.  A cavity space of 51 to 102 mm (2 to 4 ”) will be provided between the
masonry veneer and the exterior sheathing or, if insulation is used over the sheathing, between
the masonry veneer and the insulation.  In all situations a 51 mm (2 “) minimum wide air space is
required and needs to be coordinated with the standard dimensions of lintels and shelf angles.
The cavity provides water drainage and prevents moisture migration from the masonry wythe to
the steel stud backup wall.  The cavity should be kept clean of mortar droppings.  To keep mortar
droppings from plugging the weep holes place a course gravel or drainage material behind the
weep holes in the cavity to a minimum depth of 102 mm (4”).

k.  Masonry Crack Control.  Crack control will be in accordance with the Masonry Manual
for anchored veneer.

l.  Weep Holes.  Head joint weep holes that extend through the masonry wythe will be
provided immediately above the mortar bed joint containing the horizontal leg of the through wall
metal flashing and near the top of the wall at the same spacing.  Details along with the required
spacing will be shown on a wall section on the contract drawings. Weep holes need to be kept
free of  debris during construction and need to  be functional at the end of the construction period.

m.  Head Joint Vents.  Head joint vents will be placed near the top of the veneer wythe at
the same spacing as the weep holes.  These vents will help maintain a dry cavity.

4.  WALL SYSTEM DESIGN REQUIREMENTS.  This exterior wall system will be designed
assuming that all out-of-plane lateral loads are resisted entirely by the steel stud backup wall.
The veneer anchors will be designed to transfer those lateral loads to the steel studs.  All in-plane
loads will be isolated from the stud wall system.  All vertical masonry loads will be carried by a
shelf angle or the foundation wall.  Veneer anchorage will provide sufficient movement to account
for the story drift displacements around window and door openings.

a.  Steel Studs.  Studs will be sized and spaced to resist wind or seismic loads.  Wind
loads on steel studs and framing will be in accordance with EI 01S901 and seismic loads will be
in accordance with TI 809-04.  Supplemental framing will be added at the heads, jambs and sills
of openings, as required by design, to resist the tributary loads from the opening closures (doors,
windows, etc.).  The stud system selected for lateral loading will be checked for deflection, which
normally controls panel wall design.  Material thickness for the top and bottom runners will be
designed for allowable stress and deflection and will be equal to or thicker than the steel stud
used in the wall.  The minimum delivered material thickness for steel studs is shown in table 1-1.

(1)  Section properties.  All section properties needed for the design of the steel
studs and framing will be in accordance with AISI.

(2)  Allowable stresses.  All allowable stresses used for the design of the steel
studs and framing will be in accordance with AISI.
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(3)  Deflection limits.  The allowable steel stud horizontal deflection, D due to the
controlling lateral load is defined as follows:

600
L

£D (Eq 4-1)

Where:
L = The vertical span of the steel studs in mm (in).

(4) Selection of top and bottom runners.  The base metal thickness for the steel
stud runners is equal to or greater then for the steel stud.  The thickness of the top
runner, t will be sized as follows:

2/1
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)e)(P(5338.7

t
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é
= (Eq 4-2)

Where:
P = the top end wind load reaction (lbs).
e = the gap between the inner top track and the outer top track as shown in figure 4-1,
(in).
F

y
 = the yield strength of the top runner metal (psi).

b
eff

  = the effective width of the top channel flange for analysis (in).

For double track systems, b
eff

 is equal to the stud spacing.  With single track systems, b
eff

is equal to:
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+=

)30tan(
De

2Wb studeff
(Eq 4-3)

Where:
W

stud
 = the width of the stud flange (in).

D = depth of track overlap in a slip track connection, 32 mm (1.25 in).

Figure 4-1: Double Track Slip Joint
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b.  Veneer Anchors.  Anchors will be structurally adequate to transfer the lateral loads to
the steel stud wall in both tension and compression.  Capacity will be based on test results of the
anchor provided.  The following design procedure to determine the required anchor capacity.

Step 1:  Calculate the maximum static out-of-plane distributed load at first cracking.

2

n
cr L

t
1CW ú

û

ù
ê
ë

é
= (Eq 4-4)

Where:
W

cr
 = the cracking distributed load for the masonry KPa (psf),

t
n
  = the nominal thickness of the masonry wall mm (in),

L = the stud span m (ft),
C1 = constant =0.001644 – metric, (240 – English).

Step 2:  Calculate the total static out-of-plane distributed load corresponding to the cracking wind
load.
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WW (Eq 4-5)

Where:
W

tot 
= the total static out-of-plane wind distributed load corresponding to the cracking

wind load KPa (psf),

E
b
I
b
 =the rigidity of the masonry veneer for the stud spacing N-mm2 (Kip-in

2
),

E
s
I
s
 = the rigidity of a steel stud N-mm2 (Kip-in

2
).

Step 3:  Compare W
tot

 to W
d
 (the design wind load ) to calculate the maximum anchor force
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(Eq 4-7)

Where:
Stud Spacing is in mm (in)
C2 = constant = 1000 – metric, (12 – English)

Step 4:  Compare A
max

 to the seismic criteria.

maxdesseismax AAthenAAif =³ KKK (Eq 4-8)
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seisdesseismax AAthenAAif =á KKK (Eq 4-9)

( )rwDSseis AV)S(3CA = (Eq 4-10)

Where:
A

max
 = the maximum anchor load N (lbs),

A
des

 = the design wind anchor load N (lbs),

A
seis

 = the seismic anchor load N (lbs),

V
w
 = the veneer unit weight KPa (psf),

A
r
 = the area per anchor m2 (ft

2
),

C3 = constant =2,000,000 – metric, (2 – English).
SDS = the design spectral response acceleration as per Eq C-3

Step 5:  Choose the anchor capacity.

if K<= 350 N/mm (2 kips/in)  then A
cap

 = 1.25 A
des (Eq 4-11)

if K> 350 mm (2 Kips/in)  then A
cap

 = 2 A
des (Eq 4-12)

Where:
K = the anchor stiffness with the load in N/mm (kips/in) of deflection,
A

cap
 = the specified load capacity of the anchor to be selected N (lbs).

This design procedure was derived from Western States Clay Products Association test data.

c.  Shelf Angles.  The angle size and the attachment details of the angle to the building
structure to provide vertical support of the masonry wythe must be determined by the designer.
The deflection of the shelf angle under gravity loading due to the masonry will be limited to not
more than 1.6 mm (1/16 “) at the end of the horizontal leg.  Rotation of the shelf angle support will
be included in the 1.6 mm (1/16 ”) deflection limit for the horizontal leg displacement calculation.

5.  WORKMANSHIP. The success of this wall system is dependent upon good detailing and good
workmanship.  Careful, quality workmanship is essential to produce a satisfactory masonry
veneer steel stud wall system.  Special attention needs to be given to the masonry veneer
construction to provide quality mortar, full head joints, bed joints, clean cavities, proper flashing
and weep holes, and to provide mortar free brick expansion joints.  It is essential that the design
and detailing requirements in this document and references contained herein are clearly provided
in contract plans and specifications.

6.  DESIGN EXAMPLE.

a.  Given:

(1)  Wall System:  An exterior non-loadbearing brick veneer steel stud wall
system is required.  The wall section consists of a nominal 102 mm (4 “) face brick wythe,
a 60 mm (2-3/8 “) cavity, and a backup wall of 152 mm (6 “) steel studs with a 13 mm
(1/2“) gypsum sheathing fastened to each side of the studs.  The wall has a vertical span
of 3.66 m (12 ‘) and is simply supported.

(2)  Design lateral Loading:  The design wind pressure for the wall is 1.34KPa (28
psf) acting inward or outward on the wall.  The structure is in seismic zone zero.
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b.  Problem:  Check the design of the wall system described above.  Check the allowable
flexural stress and the allowable deflection of the steel studs due to that loading.

c.  Solution:

(1)  Member loading requirements:  Since the steel studs are to be designed to
resist the total lateral (wind) loading, the anchors need to be selected to transfer the
lateral loading from the brick wythe to the steel studs.

(2)  Assumptions:

(a)  Studs:  The minimum stud to be checked is: a 152 mm (6 “) stud;
1.438 mm (0.0566 “) thickness, 41 mm (1-5/8 “) flange width and with a 13 mm
(1/2 “) return.  Studs will be spaced on 406 mm (16 “) centers.

(b)  Anchors:  The brick wythe is attached to the steel studs backup wall
with 4.8 mm (3/16 “) diameter corrosion resisting veneer anchors spaced 406
mm (16 “) on center both vertically and horizontally.

(3)  Check stud strength:

(a)  Section Properties:  From the American Iron and Steel Institute (AISI,
Specification for the Design of Cold-Formed Steel Structural Members, Part V,
“Charts and Tables”.

Thickness of sheet (t) = 1.438 mm (0.0566 “),
Depth of section (D

stud
) = 152 mm (6.00 “),

Width of flange (B) = 41 mm (1.625 “),
Return of flange  (C) = 15 mm (0.60 “),

Section Modulus (S
x
) = 17,649 mm3 (1.077 in

3
),

Moment of inertia (I
x
) = 1,318,205 mm4 (3.167 in

4
),

Area of section (A
stud

) = 15.6 mm (0.616 “).

(b)  Steel Properties:

Modulus of elasticity (E
s
) = 200,000 MPa (29,000,000 psi),

Yield strength (F
y
) = 228 MPa (33,000 psi).

(c)  Design check:  The uniform wind load normal to the wall, w, in N/m
(lbs/ft) of wall, is:

)plf3.37...(mm/N544
4C
mm406

)KPa34.1(w =ú
û

ù
ê
ë

é
= (Eq 4-13)

Where:
C4 = constant = 1 - metric, (12 – English)

The moment in steel stud due to wind load, M
s
, is:

)lbsft672...(mN.911
8

)m66.3..(m/N544

8

wL
M

22

s --=== (Eq 4-14)
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Where:
L = the span of the steel studs in m (ft).

The allowable moment in steel stud with a 1/3 increase is stress for wind, M
a
, is:

)lbft359,2...(mN.198,3
)5C(67.1

)mm649,17)(MPa228(33.1SF33.1
M

3

f

xy
a --==

W
= (Eq 4-15)

Where:
W

f
= the required factor of safety for bending ad given in the AISI specification,

C5 = constant =1,000,000 – metric, (12 – English).

)lbsft672..(mN.911M..)..lbsft359,2..(mN.198,3M sa --ññ--= (Eq 4-16)

(4)  Check stud deflection:  The deflection, D, in the steel stud  due to the wind
load is:

xs

4

IE384
6CwL5

=D (Eq 4-17)

)in189.0...(mm.8.4
)mm.204,318,1)(MPa000,200(384

)10()m.66.3)(m/N.544(5
4

94

==D (Eq 4-18)

Where:
C6 = constant = 109 – metric, (1728 – English)

The allowable deflection in the steel stud, is given by:

)in240.0...(mm.1.6
600

)7C(m.66.3
600
L

==£D (Eq 4-19)

OK)in240.0...(mm.1.6)in189.0...(mm.8.4 KKK á (Eq 4-20)

d.  Summary:

(1) A 152 mm (6 “), 1.438 mm (0.0566 ”) thick steel stud with a 41 mm (1-5/8 “)
flange and a 15 mm (0.6 “) return, spaced at 406 mm (16 “) centers is satisfactory.

(2)  Use a 4.8 mm (3/16 “) diameter wire anchor spaced on 406 mm (16 “)
centers vertically and horizontally.
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APPENDIX B

COLD-FORMED STEEL TEST PANEL DRAWINGS

This Appendix shows a typical three story barracks framing layout, and the three panels as tested
by CERL.  The elevation views are a good representation of the typical shear wall panel layout.
However, the connection details have been modified since the completion of testing.  Designers
are to use the new joint details as shown in the design example in appendix D when designing.
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Figure B-1: Prototype 3 Story Barracks
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Figure B-2: Shear Wall Test Panel A1
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Figure B-3: Shear Wall Test Panel A2
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Figure B-4: Shear Wall Test Panel D1
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APPENDIX C

FEMA 302 AND OTHER STANDARD GUIDANCE FOR COLD-FORMED STEEL SEISMIC DESIGN

C1.  INTRODUCTION.  Seismic use groups (FEMA 302, 1.3) are used to determine occupancy
importance factors (FEMA 302, Table 1.4).   Seismic use group III is for the most critical facilities as
defined in FEMA 302, 1.3.  This table is reproduced below:

Table C-1 Occupancy Importance
Factors

Seismic Use Group I
I 1.0
II 1.25
III 1.5

TI 809-04 uses enhanced performance objectives to define seismic design forces for more critical
facilities rather than the occupancy importance factors presented here.

C2.  DEFINING GROUND MOTION.  Seismic ground motions shall be defined according to FEMA 302
Chapter 4 and TI 809-04 Chapter 3.  This paragraph defines ground motions for the maximum
considered earthquake ground motions derived from Maps 1 through 24 (FEMA 302, Chapter 4).
Spectral response acceleration at short periods, SS and at 1 second, S1 are obtained from Maps 1
through 24 of FEMA 302.  For most regions of the nation, the maximum considered earthquake ground
motion is defined with a uniform likelihood of exceedance of 2 percent in 50 years (2500 year return
period)1.

Site classifications shall be determined based on soil type (A through F), which may be based on shear
wave velocity, νs average blow counts from standard penetration resistance test N 2 or unconfined shear
strength, su of the soil (FEMA 302, 4.1.2).  From the site classifications, values of site coefficients (Fa
and Fv) are determined for the mapped spectral response acceleration values (FEMA 302, Table 4.1.1.4a
and Table 4.1.1.4b).  These tables are reproduced below:

Table C-2a Values of Fa as a Function of Site Class and Mapped Short-Period
Maximum Considered Earthquake Spectral Acceleration3

Site Class Short Period Maximum Considered Response Spectral Acceleration
SS ≤ 0.25 SS = 0.50 SS = 0.75 SS = 1.00 SS ≥ 1.25

A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.2 1.2 1.1 1.0 1.0
D 1.6 1.4 1.2 1.1 1.0
E 2.5 1.7 1.2 0.9 a4

F a a a a a

                                                       
1 1997 NEHRP, Part 2: Commentary (FEMA 303), Chapter 4 – Ground Motion, p. 37.
2 Defined in ASTM D1536-84.
3 Use straight line interpolation for intermediate values of SS.
4 a indicates that a site-specific geotechnical investigation and dynamic site response analyses shall be performed.
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Table C-2b  Values of Fv as a Function of Site Class and Mapped 1 Second
Period Maximum Considered Earthquake Spectral Acceleration5

Site Class 1 Second Period Maximum Considered Response Spectral
Acceleration

S1 ≤ 0.1 S1 = 0.2 S1 = 0.3 S1 = 0.4 S1 ≥ 0.5
A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.7 1.6 1.5 1.4 1.3
D 2.4 2.0 1.8 1.6 1.5
E 3.5 3.2 2.8 2.4 a6

F a a a a a
The maximum considered earthquake spectral response acceleration for short periods, SMS and at 1
second, SM1 adjusted for site class effects are calculated as follows (FEMA 302, Eq. 4.1.2.4-1 and
4.1.2.4-2):

SaMS SFS = (Eq C-1)

and

1v1M SFS = (Eq C-2)

These values define the elastic spectra.  These values are reduced to define design earthquake spectral
response acceleration at short periods, SDS and at 1-second period, SD1 as follows (FEMA 302, Eq.
4.1.2.5-1 and 4.1.2.5-2):

MSDS S
3
2

S = (Eq C-3)

and

1M1D S
3
2

S = (Eq C-4)

From these terms a design response spectrum is developed as indicated in Figure C-1 (FEMA 302,
Figure 4.1.2.6).  For the natural period of the structure, T this spectrum defines values of effective
acceleration.  The three regions of this spectrum are defined as follows:

Figure C-1. Design response spectrum.

                                                       
5 Use straight-line interpolation for intermediate values of S1.
6 a indicates that a site-specific geotechnical investigation and dynamic site response analyses shall be performed.
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For periods less than or equal to, T0 the design spectral acceleration, Sa shall be (FEMA 302, Equation
4.1.2.6-1):

DS
0

DS
a S4.0T

T
S

6.0S += (Eq C-5)

For periods greater than or equal to T0 and less than or equal to TS, the design spectral response
acceleration , Sa, shall be taken as equal to SDS.

For periods greater than TS, the design spectral response acceleration, Sa, shall be (FEMA 302, Equation
4.1.2.6-3):

T
S

S 1D
a = (Eq C-6)

Where:
T = the fundamental period of the structure in seconds.
T0 = 0.2SD1/SDS.
TS = SD1/SDS.

C3.  SEISMIC DESIGN CATEGORY.  Each structure shall be assigned a seismic design category based
on their Seismic Use Group and design response coefficients, SDS and SD1 as indicated in the tables
below (from FEMA 302 Tables 4.2.1a and 4.2.1b):

Table C-3a  Seismic Design Category Based on Short Period
Response Accelerations

Value of SDS Seismic Use Group
I II III

SDS < 0.167g A A A
0.167g ≤ SDS < 0.33g B B C
0.33g ≤ SDS < 0.50g C C D

0.50g ≤ SDS D D D

Table C-3b  Seismic Design Category Based on 1 Second Period
Response Accelerations

Value of SDS Seismic Use Group
I II III

SD1 < 0.067g A A A
0.067g ≤ SD1 < 0.133g B B C
0.133g ≤ SD1 < 0.20g C C D

0.20g ≤ SD1 D D D
0.75g ≤S1 E E F

C4.  STRUCTURAL CONFIGURATION AND REDUNDANCY.  FEMA 302, Section 5.2.3 and 5.2.4
presents guidance on structural configurations and redundancy.  Diaphragms are considered flexible if
the maximum lateral deformation of the diaphragm exceeds twice the average story drift of the
associated story (FEMA 302, 5.2.3.1).

A reliability factor, ρ, shall be defined for all structures based on the extent of structural redundancy in
the lateral-force-resisting system.  For structures in Seismic Design Categories A, B and C, the value for
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ρ shall be taken as 1.0.  For structures in categories D, E and F, values for ρ shall be taken as the largest
of the values of ρ x calculated for each story of the structure “x” as follows (FEMA 302, Equation 5.2.4.2):

xmax
x

Ar
1C2

x

−=ρ (Eq C-7)

Where:
rmaxx  = the ratio of design story shear resisted by the single shear panel carrying the most shear

force in the story to the total shear story, for a given direction of loading.  Lateral loads shall
be distributed to panels based on relative stiffness considering the interaction of panels with
varying stiffness.

Ax = the floor area in m2 (ft2) of the diaphragm level immediately above the story.
ρ  need not exceed 1.5, and may be used for any structure.  The value of ρ shall not be taken as

less than 1.0.
C1 = constant, 6.1 – metric, (20 – English)

C5.  LOAD COMBINATIONS.  Consideration of combinations of loads in the two orthogonal directions is
not needed.  The effects of gravity loads and seismic forces shall be combined in accordance with the
factored load combinations as indicated below (ASCE 77).

S2.0L5.0E0.1D2.1 +++ (Eq C-8)
and

E0.1D9.0 + (Eq C-9)

Where:
D = the dead load.
E = the effect of seismic load.
L = the live load – the load factor on L in Equation C-8 shall equal 1.0 for garages, areas

occupied for public assembly, and all areas where the live load is greater than 4.79 kN/m2

(100 psf).
S = the snow load – when the flat roof snow loads exceed 1.44 KN/m2 (30 psf), the full design

snow load shall be included in Equation C-8.

The effect of seismic loads, E shall be defined as follows, when the effect of gravity and seismic loads
are additive (FEMA 302, 5.2.7):

DS2.0QE DSE +ρ= (Eq C-10)

Where:
E = the effect of horizontal and vertical earthquake-induced forces.
ρQE = the maximum horizontal force that could be resisted by the bracing.
ρ = the system redundancy factor.
QE = the effect of horizontal seismic forces.
0.2SDSD = the vertical spectral acceleration effect of the seismic load.
SDS = the design spectral response acceleration at short periods.
D = the effect of dead load.

The effect of seismic loads, E shall be defined as follows, when the effect of gravity and seismic loads
counteract each other:

                                                       
7 Minimum Design Loads for Buildings and Other Structures, ASCE 7-95, Section 2.3.2.
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DS2.0QE DSE −ρ= (Eq C-11)

The effects of gravity load (dead, live and snow load) and seismic forces shall be combined as follows
when the effect of gravity and seismic loads are additive, by combining Equations C-8 and C-10:

EDS QS2.0L5.0D)S2.02.1( ρ++++ (Eq C-12)

The effects of gravity load and seismic forces shall be combined as follows when the effect of gravity
and seismic loads counteract each other, by combining Equations C-9 and C-11:

EDS QD)S2.09.0( ρ+− (Eq C-13)

For both expressions in Equations C-12 and C-13, the total horizontal force is ρQE.  This force alone
defines the total lateral load that must be resisted by the shear panel diagonal straps or full panel sheets,
and these elements should be sized based on this force.

The effect of seismic loads, E shall be defined as follows, to account for diagonal strap overstrength
when the effect of gravity and seismic loads are additive:

DS2.0QE DSE0 +Ω= (Eq C-14)

Where:
Ω0  = the system overstrength.

The effect of seismic loads, E shall be defined as follows, when the effect of gravity and seismic loads
counteract each other:

DS2.0QE DSE0 −Ω= (Eq C-15)

The term Ω0QE calculated in Equations C-14 and C-15 (TI 809-04, Equations 4-6 and 4-7) need not
exceed the maximum force that can be developed in the diagonal straps, based on the maximum
estimated ultimate strength of these elements.  This is expressed as follows:

22sssmaxsuuE0
WH

WtbnFQQ
+

=≤Ω (Eq C-16)

Where:
Fsumax = the maximum ultimate stress of the diagonal straps, which equals 1.5 Fsu for ASTM

A653 Grade 33 steel (Fsu = 310 MPa and 45 ksi) and 1.25 Fsu for Grade 50 steel (Fsu = 448
MPa and 65 ksi).

ns = the number of diagonal straps.
bs = the width of the diagonal straps.
ts = the thickness of the diagonal straps.
W = the overall panel width.
H = the overall panel height (see Figure 3-2 for a schematic panel drawing showing W and H).

The effects of gravity load (dead, live and snow load) and seismic forces shall be combined as follows to
account for diagonal strap overstrength, when the effect of gravity and seismic loads are additive, by
combining Equations C-8 and C-14:

E0DS QS2.0L5.0D)S2.02.1( Ω++++ (Eq C-17)
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The effects of gravity load and seismic forces shall be combined as follows to account for diagonal strap
overstrength, when the effect of gravity and seismic loads counteract each other, by combining
Equations C-9 and C-15:

E0DS QD)S2.09.0( Ω+− (Eq C-18)

For both expressions in Equations C-17 and C-18, the total horizontal force is Ω0QE.  Every other term in
these equations represent vertical loads.  The shear panel systems should be analyzed based on the
most critical load combination defined by either Equation C-17 or C-18.  Each panel component
(including all connections), other than the diagonal strap, should be designed based on these loads.

C6.  EQUIVALENT LATERAL FORCE PROCEDURE.  FEMA 302 and TI 809-04 present two methods
for defining the structural response: the Equivalent Lateral Force Procedure (FEMA 302, 5.3) and the
Modal Analysis Procedure (FEMA 302, 5.4).  Paragraphs C7 through C9 presents the determination of
base shear, period and vertical distribution of lateral forces using the Equivalent Lateral Force
Procedure.  Only this method is presented because of its simplicity and recognizing that typical cold-
formed steel structures will likely be low rise construction so that first mode response will dominate the
seismic response of the structures.  However if deemed beneficial the modal analysis approach
presented in FEMA 302 and TI 809-04 (Chapter 3-2.c.(2)) could be used.

C7.  SEISMIC BASE SHEAR.  Using the Equivalent Lateral Force Procedure, the seismic base shear, V
in a given direction shall be determined according to the following equation (FEMA 302, 5.3.2):

WCV s= (Eq C-19)

Where:
Cs = the seismic response coefficient.
W = the total dead load and applicable portions of other loads (see FEMA 302, 5.3.2).

The seismic response coefficient, Cs shall be determined according to the following equation:

I
R
S

C DS
s = (Eq C-20)

The value for Cs is calculated according to Equation C-20; and need not exceed the following:

( )I
RT

S
C 1D

s =  (Eq C-21)

but shall not be less than:

IS1.0C 1Ds = (Eq C-22)

nor shall it be taken as less than the following equation for Seismic Design Categories E and F:

I
R

S5.0
C 1

s = (Eq C-23)
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C8.  PERIOD DETERMINATION.  The fundamental period of the building, T in the direction under
consideration shall be defined using the structural properties and deformational characteristics of the
resisting elements in a properly substantiated analysis (FEMA 302, 5.3.3).  Alternatively, T is permitted
to be taken as the approximate fundamental period, Ta determined in accordance with the following
requirements.  The fundamental period, T shall not exceed the product of the coefficient for upper limit
on calculated period, Cu from Table C-4 and the approximate fundamental period, Ta determined as
follows:

4/3
nTa hCT = (Eq C-24)

Where:
CT = constant = 0.0731 – metric, (0.030 – English) for cold-formed steel shear panels with

diagonal straps.
hn = the height in meters (ft - English) above the base to the highest level in the structure.

Table C-4  Coefficient for Upper Limit on Calculated Period
Design Spectral Response

Acceleration at 1 Second, SD1

Coefficient
Cu

SD1 < 0.1g 1.7
0.1g ≤ SD1 < 0.15g 1.7
0.15g ≤ SD1 < 0.2g 1.5
0.2g ≤ SD1 < 0.3g 1.4
0.3g ≤ SD1 < 0.4g 1.3

0.4g ≤ SD1 1.2

C9.  VERTICAL DISTRIBUTION OF LATERAL SEISMIC FORCES.  The vertical distribution of lateral
seismic forces, Fx (kN or kip), induced at any level shall be determined from the following equations
(FEMA 302, 5.3.4):

VCF vxx =   (Eq C-25)
and

∑
=

=
n

1i
ii

xx
vx

hw

hW
C (Eq C-26)

Where:
Cvx = the vertical distribution factor.
V = the total design lateral force or shear at the base of the structure (kN or kip).
wi and wx = the portion of the total gravity load of the structure, W located or assigned to level i

or x.
hi and hx = the height (m or ft) from the base to level i or x.

The horizontal distribution of seismic story shear in any story, Vx (kN or kips) shall be determined from
the following equation (FEMA 302, 5.3.5):

∑
=

=
n

xi
ix FV (Eq C-27)

Where:
Fi = the portion of the seismic base shear, V (kN or kips) induced at level i.
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The seismic design story shear, Vx (kN or kips) shall be distributed to the various vertical elements of the
seismic-force-resisting system in the story under consideration based on the relative lateral stiffness of
the vertical resisting elements and the diaphragm.

C10.  STRUCTURAL OVERTURNING RESISTANCE.  The structure shall be designed to resist
overturning effects caused by the seismic forces determined from Equation C-25.  At any story, the
increment of overturning moment in the story under consideration shall be distributed to the various
vertical force resisting elements in the same proportion as the distribution of the horizontal shears to
those elements (FEMA 302, 5.3.6).

The overturning moments at Level x, Mx (kN-m or kip-ft), shall be determined from the following
equation:

∑
=

==
n

xi
xii )hh(FMx  (Eq C-28)

Where:
Fi = the portion of the seismic base shear, V, induced at Level i.
hi and hx = the height (m or ft) from the base to Level i or x.

Foundations shall be designed for the foundation overturning design moment, Mf (kN-m or kip-ft) at the
foundation-soil interface determined using Equation C-28 at the foundation level, multiplied by a
reduction factor of 0.75.

C11.  STORY DRIFTS AND P-DELTA EFFECTS.  The story drifts and, member forces and moments
due to P-delta effects shall be determined in accordance with the following guidance (FEMA 302, 5.37).
Story drifts shall be calculated based on the application of design seismic forces to a mathematical
model of the structure.  The model shall include the stiffness and strength of all elements that are
significant to the distribution of forces and deformations in the structure and shall represent the spatial
distribution of the mass and stiffness of the structure.  The design story drift, ∆ shall be computed as the
difference of the deflections at the center of mass at the top and bottom of the story under consideration.
The deflections of level x, δx (mm or in) shall be determined according to the following equation:

I
C xed

x

δ
=δ (Eq C-29)

Where:
δ xe = the deflections determined by an elastic analysis (mm or in.) based on the forces defined in

Equation C-25.

For determining compliance with the story drift limitations in Table 3-2, the deflections of Level x, δx (mm
or in) shall be calculated as expressed in Equation C-29.  For the purposes of this drift analysis only, the
computed fundamental period, T in seconds, of the structure may be used without the upper bound
limitations specified in Table C-4, when determining drift level seismic design forces.

The design story drift, ∆ (mm or in) shall be increased by the incremental factor relating to the P-delta
effects if required by the following guidance (FEMA 302, 5.3.7.2).  The P-delta effects on story shears
and moments, the resulting member forces and moments, and the story drifts induced by these effects
are not required to be considered when the stability coefficient, θ as determined by the following equation
is equal to or less than 0.10:
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dsxx

x

ChV
P ∆

=θ (Eq C-30)

Where:
Px = the total vertical design load at and above Level x (kN or kip).  When calculating the vertical

design load for purposes of determining P-delta, the individual load factors need not exceed
1.0.

∆  = the design story drift occurring simultaneously with Vx (mm or in).
Vx = the seismic shear force acting between Level x and x-1 (kN or kip).

The stability coefficient, θ shall not exceed θmax determined as follows:

25.0
C
5.0

d
max ≤

β
=θ  (Eq C-31)

Where:
β = the ratio of shear demand to shear capacity for the story between Level x and x - 1.  This

ratio may conservatively be taken as 1.0.

When the stability coefficient, θ is greater than 0.10 but less than or equal to θ max  the incremental factor
related to P-delta effects, ad shall be determined by rational analysis (see FEMA 303, Commentary,
5.3.7).  To obtain the story drift for including the P-delta effects, the design story drift, ∆ shall be
multiplied by 1.0/(1 - θ).  When θ is greater than θ max the structure is potentially unstable and shall be
redesigned.

C12.  DIAGONAL STRAP DESIGN.  From the values of seismic story shear, Vx and additional shear
force due to torsion, the shear panel dimensions are defined and  diagonal straps designed.  The straps
are tension only members and their design strength is defined by the following equation (AISI, C2, p. V
45):

sysstsynt F)tb(FA ∑φ=φ (Eq C-32)

Where:
φt = the resistance factor for tensile members (0.95).
An = the cross-sectional area of the all diagonal straps in tension (bsts).
bs= the width of an individual diagonal strap.
ts = the thickness of an individual strap.
Fsy = the design yield strength of the strap.

The shear panel lateral yield capacity, Qsy when the diagonal straps are the sole lateral-load-resisting
element is calculated as follows:















+
=

22
syssssy

WH

WFtbnQ (Eq C-33)

Where:
W = the width of a trial shear panel.
H = the height of a trial shear panel.
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The shear panel design strength, φtQsy must be greater than the seismic story shear, Vx and additional
shear force due to torsion, Qsi for all shear panels resisting in the frame of the building for which these
forces are applied.  This is expressed as:

six22syssstsyt QV
WH

WFtbnQ +≥




















+
∑φ=φ  (Eq C-34)

The number of shear panels, panel width, height, and strap size and strength shall be designed
according to Equation C-34 to meet minimum lateral yield capacity.  All diagonal strap material must be
ASTM A653 steel.  Diagonal straps may not use re-rolled steel, because the re-rolling strain hardens the
material, increasing material strength variability and reducing elongation (see USACERL TR FL-XX,
Chapter 4 for a discussion of this concern).

C13.  COLUMN AXIAL CAPACITY.  The column axial design strength, P shall be determined as follows
for columns built-up with cold-formed steel studs or individual structural tubing members (AISI, C4,
Concentrically Loaded Compression Members):

nec FAP φ= (Eq C-35)

Where:
φc = the resistance factor for compression, which equals 0.85.
Ae = the effective area at the stress Fn.
Fn = the nominal strength of the column, determined as follows:

For λc ≤ 1.5

cyn F)658.0(F
2
cλ= (Eq C-36)

For λ c >  1.5

cy2
c

n F
877.0

F 







λ

= (Eq C-37)

Where:

e

cy
c F

F
=λ (Eq C-38)

Where:
Fcy = the column design yield strength.

( )2
2

e

r
KL

EF π
= (Eq C-39)

Where:
E = the modulus of elasticity.
K = the effective length factor.
L = the unbraced length of the column.
r = the radius of gyration of the full, unreduced column cross section, calculated as follows:
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A
Ir = (Eq C-40)

The effective area, Ae is calculated as follows for columns built-up from cold-formed steel studs such that
they form a closed section or structural tube columns (AISI, C4):

)bw(ntAA cce −−= (Eq C-41)

Where:
Ac = the nominal column area.
n = the number of studs making up the column, or is 2 when using structural tube columns.
tc= the thickness of the stud material used in the built-up columns, or the thickness of the

structural tube column.
w = the flat width of the stud web making up the built-up columns, or the width of the structural

tube face perpendicular to the plane of the panel.  Assuming the outside radius of the stud
corners is twice the thickness, tc this may be calculated as follows:

cs t4dw −= (Eq C-42)

ds = the depth of the studs making up the built-up columns, or the structural tube width
perpendicular to the plane of the panel,

b = the effective width and shall be determined as follows (AISI, B2.2):

for 70
t
wand,0

w
d

5.0
c

h ≤≥≥          and

the distance between centers of holes ≥ 0.5w and ≥ 3dh,

b = w – dh   when   λ ≤ 0.673 (Eq C-43)

λ






 −
λ

−
=

w
d8.022.0

1w
b

h

when λ > 0.673 (Eq C-44)

Where:
dh = the diameter of holes.
λ = a slenderness factor defined as follows (AISI, B2.1):

E
F

t
w

k
052.1 n

c








=λ (Eq C-45)

Where:
k = the plate buckling coefficient, equal to 4 for the studs making up the built-up columns or

structural tube columns.

C14.  COLUMN SHEAR CAPACITY.  The column shear design strength, Vc shall be determined as
follows for columns built-up with cold-formed steel studs or individual structural tubing members (AISI,
C3.2, Strength for Shear Only):
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For 
cy

v

c F
Ek

96.0
t
h

≤

csccyvC tnhF60.0V φ= (Eq C-46)

Where:
h = the depth of the flat portion of the web, which equals the stud flange width for the built-up

columns.
kv = the shear buckling coefficient, which equals 5.34 for both built-up and structural tubing

columns.
φv = 1.0
hc = the depth of the column, which is the column width in the in-plane direction of the panel.
ns = the number of faces of a shear panel with diagonal straps (i.e., 1 or 2).

C15.  CONNECTION SHEAR AND PULL-OVER.  The design shear (AISI E4.3.1) and pull-over per
screw (AISI E4.4.2), Ps shall be calculated as follows:

)andPPmin(P novnsss φ= (Eq C-47)

Where, the nominal shear strength per screw, Pns, shall be determined as follows:

For t2/t1 ≤ 1.0, Pns shall be taken as the smallest of:

2u
3
2ns Fdt2.4P = tilting mode of failure (Eq C-48)

1u1ns dFt7.2P = bearing mode of failure (Eq C-49)

2u2ns dFt7.2P = bearing mode of failure (Eq C-50)

For t2/t1 ≥ 2.5, Pns shall be taken as the smaller of:

1u1ns dFt7.2P = bearing  mode of failure (Eq C-51)

2u2ns dFt7.2P = bearing  mode of failure (Eq C-52)

For 1.0 < t2/t1 < 2.5, Pns shall be determined by linear interpolation between the two cases above.

Where:
φs = the screw resistance factor for shear, equal to 0.5.
d = the nominal screw diameter.
t1 = the thickness of the member in contact with the screw head.
t2 = the thickness of the member not in contact with the screw head.
Fu1 = the ultimate tensile strength of the member in contact with the screw head.
Fu2 = the ultimate tensile strength of the member not in contact with the screw head.

The nominal shear strength per screw, Pns may also be determined by AISI Tables IV-7a and IV-7b for
connections to various sheet thicknesses for sheets with ultimate strengths of 310 MPa (45 ksi) and 448
MPa (65 ksi) (ASTM A653, Grade 33 and 50 respectively).  These tables may only be used if ultimate
strengths of the materials being connected are the same.
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The nominal pull-over strength, Pnov shall be calculated as follows:

1uw1nov Fdt5.1P = (Eq C-53)

Where:
dw = the larger of the screw head diameter or the washer diameter, and shall not be taken as

larger than 13 mm (½ inch).

C16.  WELDED CONNECTION DESIGN.  Diagonal strap-to-column connection fillet weld design based
on AISI (E2.4 Fillet Welds) is summarized below.  The design shear strength for loading in the
longitudinal direction, PL shall be determined as follows:

For L/t < 25 uL tLF
t

L01.0
1P φ






 −= (Eq C-54)

Where:
φ = 0.60.
L = the length of fillet weld.
t = the least value of the thicknesses of the two members being welded.

For L/t ≥ 25 uL tLF75.0P φ= (Eq C-55)

Where:
φ = 0.55

The design shear strength of loading in the transverse direction, PT shall be determined as follows:

uT tLFP φ= (Eq C-56)

Where:
φ = 0.60.

For fillet welds to heavy strap material, thicker than 0.150 inches, the design shear strength for both
longitudinal and transverse loading due to weld failure, PW

8 shall not exceed the following:

xxwW LFt75.0P φ= (Eq C-57)

Where:
φ = 0.60.
tw = the effective throat, equal to 0.707 times the least leg of the weld in-plane or out-of-plane of

the materials being welded.  A larger effective throat shall be permitted if measurement
shows that the welding procedure to be used consistently yields a larger value of tw.

Fxx = the weld metal strength designation in AWS electrode classification.

C17.  ANCHOR FLARE BEVEL GROVE WELD DESIGN.  Column-to-anchor flare bevel grove weld
design based on AISI (E2.5 Flare Grove Welds) is summarized below.  The design strength of the
longitudinal loaded flare bevel grove weld, PG shall be determined as follows:

                                                       
8 AISI Commentary, E2.4, indicates that this equation is needed to cover the possibility of weld failure through the throat of the weld
material, because tests that ensured tearing in the plate were not conducted on plates thicker than 0.15 inches.
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For  tc ≤ tw < 2tc (single shear) cucGG LFt75.0P φ= (Eq C-58)

For  tw ≥ 2tc (double shear) cucGG LFt5.1P φ= (Eq C-59)

Where:
φG = the resistance factor for flare grove welds, equal to 0.55.
tc = the thickness of the column material.
L = the length of the flare bevel grove weld.
Fcu = the ultimate strength of the column steel.

C18.  ANCHOR BOLT CONE FAILURE. Embedded anchors shall be used for all anchor bolts described
here.  The anchor bolt cone failure design strength, Pc shall exceed the applied tensile force per bolt,
PtAB (Equation 3-37).  Either one or two anchor bolts may be installed on both sides of the columns (i.e.,
nAB equal to 2 or 4).  If only one bolt is installed, the cone failure surface will be that of a simple cone.  If
two bolts are installed, the critical failure surface will be the minimum failure surface defined by two
independent cones or a surface that accounts for the overlap of two cones.  If the two bolts on the same
side of the column are close enough relative to the bolt embedment length, then the combined surface
will control.  The column anchor bolts at the outside of the shear panel will always be more highly
stressed than those at the inside.  These bolts will be more critically loaded by uplift forces due to the
direction of diagonal strap forces and moment in the column.  A cone failure surface including bolts on
both sides of the columns will never be more critical than the cone for bolts only at the outside of the
shear panel.  Therefore, only the cone with bolts on the outside are considered.  The anchor bolt cone
failure design strength, Pc (in pounds) is determined by9:

cccc A'f4P φ= (Eq C-60)

Where:
φc = the cone strength reduction factor - a value of 0.85 for uncracked concrete.
f’c = the specified concrete compressive strength in psi
Ac = the minimum of the area of a single anchor bolt stress cone (Ac1) or the summation of the

combined failure surface for two overlapping stress cones divided by two (Ac2), in inches2.
The area of individual stress cones is dependent on the angle of cone failure.  In the case of
expansion anchors this angle varies from about 60 degrees (measure from the axis of the
anchor) for short embedments (lAB ≤ 2 inches) to 45 degrees for lAB ≥ 6 inches.  In this
guidance this angle will conservatively be set equal to 45 degrees.  Then the radius of the
cone at the concrete surface, rc is equal to anchor embedment length, lAB.  The area of an
individual stress cone failure surface, Ac1 shall be calculated as follows:

2
AB

2
AB

2
cc1c l2lrrA π=+π= (Eq C-61)

The area of the combined failure surface for two overlapping stress cones, divided by two for an
individual anchor bolt, Ac2 shall be calculated as follows:

( )ccABAB
2
AB

2
c

ccc
2c d2ll

2
2lr

2
d2r

A +π=+
+π

= (Eq C-62)

                                                       
9 ACI 355.1R-91, Equation 3.2.
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The anchor bolts shall not be installed too close to the edge of a concrete beam or slab, or edge failure
could occur before developing the cone strength.  The minimum distance from the center of an anchor
bolt to the edge of the concrete to prevent side cone failure, m (in inches) is determined as follows:10

c

t
AB

'f73

F
dm = (Eq C-63)

                                                       
10 ACI 355.1R-91, Equation 3.3.
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APPENDIX D

SEISMIC DESIGN EXAMPLE
(English I-P units only)

D1.  EXAMPLE DESIGN PROBLEM.  An example problem is presented here to demonstrate the
design process presented in Chapter 3 and Appendix C.  Shear panels will be designed in the short
direction of the building only to illustrate the design process.  In an actual building the lateral load
resisting system must be designed in both directions.  This example is a barracks-type building that
will be designed for construction at Fort Lewis, located between Tacoma and Olympia, Washington.
This building is similar to a Prototype 3 Story Steel Stud Framed Barracks Building for Seismic Zones
0 – 21.   The reader will be referred to tabular data and equations presented in Chapter 3 and
Appendix C.  When needed, FEMA 302 guidance will be referenced.

The barracks building has a Seismic Use Group of I (FEMA 302, 1.3), which gives it an Occupancy
Importance Factor, I, of 1.0 (see Table C-1).

D2.  GROUND MOTION DEFINITION.  The maximum considered earthquake ground motions are
determined from spectral response acceleration Maps 9 and 10 (for the Pacific Northwest).  The
spectral response acceleration for short periods, SS, is 1.2 g (Map 9).  The spectral response
acceleration for 1 second, S1, is 0.39 g (Map 10).   Table D-1 summarizes these values.  These
values are determined by interpolating between the map contours for the Fort Lewis location.  The
soil conditions are unknown, so a reasonable worst-case site classification of D is used.   Values of
Site Coefficients, Fa and Fv, are calculated based on straight-line interpolation from the values in
Tables C-2a and C-2b, and are shown in Table D-1.  Values for the maximum considered earthquake
spectral response acceleration for short periods, SMS and at 1 second, SM1 adjusted for site class
effects, are calculated using Equations C-1 and C-2, and are shown in Table D-1.  Design earthquake
spectral response acceleration at short periods, SDS and 1 second period, SD1 are calculated using
Equations C-3 and C-4, and are shown in Table D-1.

Table D-1.  Earthquake Ground Motion Definition
Summary for Fort Lewis.

Importance Factor, I 1.0
Short Period Spectral Response Acceleration, SS 1.2 g

1 Second Spectral Response Acceleration, S1 0.39 g
Site Classification D
Site Coefficient, Fa 1.02
Site Coefficient, Fv 1.62

Adjusted Short Period Spectral Response Acceleration, SMS 1.22 g
Adjusted 1 Second Spectral Response Acceleration, SM1 0.63 g
Design Short Period Spectral Response Acceleration, SDS 0.82 g
Design Short Period Spectral Response Acceleration, SD1 0.42 g

T0 0.103 seconds
TS 0.516 seconds

Assumed Design Spectral Response Acceleration, Sa 0.82 g
Seismic Design Category D

Response Modification Factor, R 4
Deflection Amplification Factor, Cd 3.5

A design response spectrum is developed from these terms, as described in Appendix C, Paragraph
C2, using Equations C-5 and C-6, and plotted in Figure D-1.  For the natural period of the structure,
T, this spectrum defines values of effective acceleration.  The natural period of the barracks building,
T, will almost certainly fall between T0 and TS, defined in Appendix C, Paragraph C2, so that the

                                                       
1 U.S. Army Corps of Engineers Barracks Prototype Department of the Army, for the National Association of Architectural Metal
Manufactures (NAAMM), by Matsen Ford Design, Drawings Dated 1/3/97.
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design spectral acceleration Sa will equal SDS.  Values for T0 and TS are shown in Table D-1.  After
the building frame is designed, the building natural period will be calculated to ensure that it falls
between T0 and TS, and corrections will be made if needed.

D3.  SEISMIC DESIGN CATEGORY.  The seismic design category for the barracks building is
determined from Tables C-3a or C-3b, based on the seismic use groups and values of SDS and SD1.  If
the tables give different categories, the larger letter is chosen.  For the barracks building, the seismic
design category is D (see Table D-1).

D4.  STRUCTURAL DESIGN CRITERIA.  The lateral-load-resisting system of the barracks building
will be designed with cold-formed steel shear panels with diagonal straps acting as the sole lateral-
load-resisting element.  Values of the response modification factor, R and deflection amplification
factor, Cd are taken from Table 3-1 and shown again in Table D-1.

The diaphragms of the barracks buildings are reinforced concrete and are considered rigid.  The
reliability factor, ρx, is calculated using Equation C-7, which for the barracks building for every floor
level gives:

8.1
.ft.sq897118

1
20

2
Ar

20
2

xxmax
x −=−=−=ρ (Eq D-1)

The value of ρx shall not be taken as less than 1.0.  Therefore no correction is needed for lateral-load-
resisting system reliability.

D5.  BARRACKS BUILDING LOAD CALCULATIONS.  The effects of gravity load (dead, live, and
snow) and seismic forces shall be combined as defined by Equations C-12 and C-13.  As explained in
Appendix C, Paragraph C5, the total lateral force that must be resisted by the shear panel diagonal
straps is simply defined by ρQE in these equations.  In the case of the barracks building this becomes
QE, and the diagonal straps are first sized based on this force.

The barracks building will be designed to act independently in the two orthogonal directions.   Figures
D-2 and D-3 show schematic drawings of the barracks building.  Figure D-2 shows the plan view and
long-direction elevation.  Figure D-3 shows the short-direction elevation of the building.  Table D-2
summarizes the weight calculations for the entire building using spreadsheet calculations.  These
weights include roof and floor dead load (20 and 40 psf, respectively); exterior wall weight (10 psf);
interior wall weight (10 psf); brick veneer weight (40 psf); and room and corridor live load (40 and 80
psf, respectively).2  The brick veneer is self-supporting for gravity loads, and vertical and in-plane
lateral seismic forces.  The building lateral-load-resisting system (shear panels) does resist out-of-
plane lateral seismic forces from the brick veneer weight.  Therefore, the out-of-plane long-direction
brick veneer lateral seismic forces are resisted by the short-direction shear panels.

The short-direction shear panels will be placed at every bay (20 feet, 6-5/8 inches spacing) of the
building as shown in Figure D-2, for a total of nine short-direction frames.  A trial shear panel
configuration will be assumed in which two shear panels are placed at every frame, as shown in
Figure D-3.  Figure D-3 shows that two shear panels will be placed against the perpendicular outside
walls of the building.  Shear panels will be located in the same bay at each floor level, with decreasing
capacity at the higher floor levels.

                                                       
2 Barracks Prototype Drawings, Sheet C-1.
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Table D-2.  Barracks Building Weight Calculations.

The ground snow load, pg, for Fort Lewis is 20 psf3.  The flat-roof snow load, pf, is calculated as
follows (ASCE 7-95, Eq 7-1)4:

psf6.12)psf20)(0.1)(0.1)(9.0(7.0IpCC7.0p gtef === (Eq D-2)

Where:
Ce = the exposure factor (ASCE 7-95, Table 7-2), which for an exposure category C, fully

exposed roof is 0.9.
Ct = the thermal factor (ASCE 7-95, Table 7-3), which is taken as 1.0.
I = the importance factor (ASCE 7-95, Table 7-4), which for Category II of the barracks

building is 1.0.

However, the flat-roof snow load shall not be less than the ground snow load multiplied by the
importance factor (pgI), so that the pf = 20 psf.  The sloped-roof snow load, ps is calculated as follows
(ASCE 7-95, Eq 7-2):

psf15)psf20)(75.0(pCp fss === (Eq D-3)

Where:
Cs = the roof slope factor (ASCE 7-95, Figure 7.2), which is 0.75 for the barracks building with

a 5/12 roof slope.

The snow load will not be used in this example because the flat roof snow load does not exceed 30
psf, and therefore is not included in load combinations that include seismic forces.

D6.  EARTHQUAKE FORCE DEFINITION.  Seismic forces are now defined based on the equivalent
lateral force procedure (see Appendix C, Paragraphs C6 through C9).  The seismic base shear, V in
the direction of the shear walls is given by (Equation C-19):

WCV s= (Eq D-4)

The seismic response coefficient, Cs (Equation C-20) is calculated with the variables given in Table
D-1, which becomes:

g
g

I
R
S

C DS
s 204.0

0.1
4
82.0

=== (Eq D-5)

The value of for Cs need not exceed the following (Equation C-21), where T = Ta (see Equation D-8):

                                                       
3 ASCE 7-95, Chapter 7 and Chapter 7 Commentary.
4 NEHRP, Section 5.3.2, states that in areas where the design flat roof snow load does not exceed 30 psf, the effective snow
load is permitted to be taken as zero.  The Commentary to the 1997 NEHRP (FEMA 303) Section 5.32, states that “snow loads
up to 30 psf are not considered,” in the weight, W, used to calculate the lateral earthquake loads.

Self Long Short

Total Total Supporting Direction Direction Total

Floor Floor Total Total Dead for gravity Brick Brick Room Corridor Floor

Panel Dead Floor Floor Floor Dead Story Exterior Exterior Interior Interior Load Brick Veneer Veneer Live Room Live Corridor Live
Level Load Length Width Area Load, D Height Walls Walls, EW Walls Walls, IW DT=D+EW+IW Veneer BL BS Load Area Load Area Load, L

(psf) (ft) (ft) (ft2) (kips) (ft) (psf) (kips) (psf) (kips) (kips) (psf) (kips) (kips) (psf) (ft2) (psf) (ft2) (kips)

Roof

3rd 20 164.42 54.67 8988 179.762 4.2 10 18.5 10 30.09 228.4 40 55.6 18.5 0 7892 0 1096 0

2nd 45 164.42 54.67 8988 404.465 9.0 10 39.3 10 63.74 507.5 40 117.8 39.2 40 7892 80 1096 403

1st 45 164.42 54.67 8988 404.465 9.3 10 40.7 10 66.11 511.3 40 122.2 40.6 40 7892 80 1096 403
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but shall not be less than (Equation C-22):

ggISC Ds 042.0)0.1)(42.0(1.01.0 1 === (Eq D-7)

The approximate fundamental period, Ta, in seconds is calculated using the following equation
(Equation C-24):

ondssec36.0)27)(030.0(hCT 4
3

4
3

nTa === (Eq D-8)

Where:
CT = 0.030 for cold-formed steel shear panels with diagonal straps.
hn = the height, which is 27 feet to the top of the shear walls for the barracks building.

This approximate period, Ta is used for the fundamental period, T in Equation D-6 without correction.

D7.  SHORT-DIRECTION EARTHQUAKE FORCE DEFINITION.  The total dead load and applicable
portions of other loads, W are calculated from the loads presented in Table D-2 as follows:

L25.0BIWEWDL25.0BDW T ++++=++= (Eq D-9)

For the short direction of the building this weight, WS becomes:

L25.0BIWEWDL25.0BDW LLTS ++++=++= (Eq D-10)

Where:
DT = the total dead load.
B = the brick veneer weight.
L = the live load.
D = the floor and roof dead load.
EW = the exterior wall weight.
IW = the interior wall weight.
BL = the brick veneer weight in the long direction of the building carried by the shear panels in

the short direction of the building.

The cumulative total weight in the short direction of the building, WS at the first floor is equal to 1744
kips, as shown in Table D-3.

The base shear in the short direction of the building, VS, is now calculated from Equation C-19:

kips356)kips1744)(g204.0(WCV SsS === (Eq D-11)
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Table D-3.  Short-Direction Lateral Seismic Force Calculations for the Barracks Building.

The vertical distribution of lateral seismic forces in the short direction, FxS, induced at any level shall
be determined using Equation C-25.  These values are determined based on the vertical distribution
factor in the short direction, CvxS, calculated in Equation C-26.  Values for WxS, hx, wi, and hi used in
Equation C-26 are given in Table D-3.  The short-direction lateral seismic forces, FxS, shown in Table
D-3 are the lateral force per frame in the short direction.  There are nine frames in the short direction,
nS

5, so that lateral force per frame is calculated as follows:

S

SvxS
xS n

VCF = (Eq D-12)

The barracks building is very regular in plan, so the center of rigidity, CR in both directions should be
at the center of the building.  The accidental torsion is accounted for by offsetting the center of mass,
CM, 5 percent in both directions in plan at each floor level (see Figure D-2).  The total mass at each
floor level in each direction (long and short) is multiplied by the 5 percent of the building dimension in
that direction to calculate the accidental torsional moment, Mta at each floor level.   Similar to the
lateral seismic forces, the accidental torsional moments, Mtax are distributed along the floors of the
building according to the vertical distribution factor given in Equation C-26, which is expressed as
follows:

)]FloorWidth(CV)hFloorLengt(CV[5.0M vxLLvxSStax += (Eq D-13)

Where:
CvxL = vertical distribution factor in the long direction.
VL = the base shear in the long direction.

Table D-3 gives values for accidental torsional moments, Mtax at each floor level.

The torsional resistance, Mtr (see Equation 3-3) is proportional to the square of the distance from the
center of resistance to the plane of each panel.  The torsional resistance is also proportional to the
lateral stiffness of each panel.  Therefore, because the barracks building is very long in one direction,
the shear panels in the short direction near the ends of the building will dominate the torsional
resistance.  For this example it will be assumed that all torsional resistance comes from the shear
panels in the short direction.  The torsional resistance from all shear panels, Mtr, in the short direction
can be expressed as follows (from Equation 3-3):

                                                       
5 The symbol for the number of frames in the short direction, nS, must not be confused with the number of faces with diagonal
straps on a given shear panel, ns.

Short Short Short Dir Number Short Dir Max. Add Short Dir

Direction Seismic Dir Height Vertical Frames Lateral Shear Seismic
Total Response Base at Floor Distribution in Short Seismic Accidental due to Acc Story

Panel Weight Coefficient Shear Level Factor Dir Force/frame Torsion Torsion Shear

Level WS Cs VS hxS or hxL CvxS nS FxS Mtax Qsic VxS

(k-mass) (g) (kips) (ft) (kips) (kip-ft) (kips) (kips)

Roof

3rd 284 27.042 0.276 9 10.895 1040 2.529 13.424
Cumulative 284

2nd 726 18.583 0.484 9 19.142 1837 4.469 37.035

Cumulative 1010
1st 734 9.125 0.240 9 9.506 912 2.218 48.758
Cumulative 1744 0.204 356
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The shear panel furthest from the center of rigidity provides the greatest torsional resistance.
However, the end panels in the short direction against the exterior walls will not be loaded as heavily
as the panels one bay in from the end because the end panels have only half the tributary area as the
panel one bay in.  Therefore, the panels one bay in from the end will be the most critically loaded
because of lateral loads in the short axis and the full width of that bay, and because of its large
contribution to torsional resistance.  The torsional resistance of the two shear panels that make up the
critical short-direction frame, Mtrc, may be expressed as follows:

[ ] θ=θ=θρ= ∑
=

si
2

si
2

n

1i
si

2
itrc k)9()'5.20(2k)5.20x3(2kM (Eq D-15)

Equation D-15 shows that the critical short-direction frame provides 3/20 of the total building torsional
resistance (Equation D-15 divided by Equation D-14).  This ratio can be used to calculate the applied
torsion in the critical frame by equating the total accidental torsion, Mta, and torsional resistance from
all shear panels, Mtr, as follows:

tata
tr

trc
trc M

20
3M

M
MM == (Eq D-16)

The additional shear force due to accidental torsion for the critical frame is now calculated by solving
Equation 3-3 for Qsic,as follows:

c

trc
sic

MQ
ρ

= (Eq D-17)

Values of this additional shear force are given in Table D-3 for each floor level.

Values of seismic story shear in the short direction, VxS, are calculated by modifying Equation C-27 to
include the effects of accidental torsion as follows:

( )∑
=

+=
n

xi
sicixS QFV (Eq D-18)

D8.  LONG-DIRECTION EARTHQUAKE FORCE DEFINITION.  The same process is repeated for
the definition of earthquake forces in the long direction of the building.  These results are summarized
in Table D-4.  The effects from accidental torsion are not added to the frames in the long direction of
the building.
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Table D-4.  Long Direction Lateral Seismic Force Calculations for the Barracks Building.

D9.  DIAGONAL STRAP DESIGN.  From the values of seismic story shear, Vx (Vx + Qsi in Equation 3-
4) the shear panel diagonal straps are sized according to Equation 3-4.  Values of the shear panel
design strength, φtQsy are given in Table D-5.  Two identical shear panels are used at each floor level,
and applied story shear in the short direction, VxS per shear panel are shown in Table D-5.  Trial
shear panel dimensions and diagonal strap sizes for each floor level are defined so that the design
strength, φtQsy exceeds the applied story shear, VxS per shear panel, using the spreadsheet program
that models Equation 3-4.  Table D-5 shows trial shear panel configurations that meet this
requirement for each floor of the critical frame in the barracks building example.  All diagonal straps
require ASTM 653, Grade 33 or Grade 50 steel.  Panel dimensions are based on the dimensions
given for Shearwall Type “SW-3” (Interior Load-Bearing Walls) of the barracks building drawings
(Sheet S-6).

The diagonal straps are the sole lateral-load-resisting element, and as such they determine the story
drifts.  The elastic deflections, δxe, at each floor level are calculated as follows:

S

xS

sy

sy
xe n

V
Q
δ

=δ (Eq D-19)

where δsy is the lateral deflection at diagonal strap yielding given by:


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E

F 22
sy

sy (Eq D-20)

Values of δxe are given in Table D-5, for the trial diagonal straps at each floor level in the short
direction of the building.  The design story drifts, ∆ are the differences in deflection at the center of
mass at the top and bottom of the story under consideration.  These deflections are calculated from
the elastic deflection, δxe as follows (from Equation C-29):

I
C xed

x
δ

=δ=∆ (Eq D-21)

Where :
Cd = the deflection amplification factor given in Table D-1 (3.5 for diagonal strap panels).
I = the importance factor given in Table D-1 (1.0 for the barracks building).

Values for the design story drifts are given in Table D-5.

Long Long Number Long Dir Long Dir

Direction Seismic Dir Height Vertical Frames Lateral Seismic

Total Response Base at Floor Distribution in Long Seismic Story

Panel Weight Coefficient Shear Level Factor Dir Force/frame Shear

Level WL Cs VL hxS or hxL CvxL nL FxL VxL

(k-mass) (g) (kips) (ft) (kips) (kips)

Roof

3rd 247 27.042 0.271 2 42.713 42.713

Cumulative 247

2nd 647 18.583 0.488 2 76.983 119.696

Cumulative 894

1st 653 9.125 0.241 2 38.110 157.806
Cumulative 1547 0.204 316
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Table D-5.  Diagonal Strap Design in the Short Direction.6

Increases in design story drift, ∆ related to P-delta effects are now evaluated.  P-delta effects do not
need to be considered if the stability coefficient, θ is equal to or less than 0.10.  The stability
coefficient, θ is defined in Equation C-30 and values are given in Table D-5.  These values are well
below 0.10, so design story drifts do not need to be increased.  Values of design story drifts, ∆ must
be less than the allowable story drifts, ∆a given in Table 3-2.  For the barracks building this may be
expressed as follows (from Table 3-2):

H020.0a =∆ (Eq D-22)

Values of design story drift, ∆ and allowable story drift, ∆a are given in Table D-5 for each floor level
for the trial panels in the short direction of the barracks building.   The values in Table D-5 show that
design story drifts fall below allowable drifts by almost a factor of 3.  Therefore these trial sizes meet
the drift requirements.

D10.  COLUMN DESIGN.  Columns are either built-up from studs (Panel A configuration) or are
structural tubes (Panel D).  The columns built up with cold-formed steel studs must have the studs
oriented to form a closed cross-section as shown on Drawings A1 and A2 in Appendix B.  Individual
studs must be welded to each other with a weld thickness equal to the thickness of the studs.  The
welds are intermittent, with a length and spacing that will ensure composite behavior of the columns.

Structural tubing columns consist of a single tube, which is a closed section by itself.  This column will
provide greater moment resistance because of the heavier anchorage detail, and will provide a
greater degree of structural redundancy and widening of the shear panel hysteretic performance.

a.  Column Applied Loads.  Total load applied to the entire building in the short direction is
expressed by Equation C-17, where the effects of gravity load and seismic forces are additive and
diagonal strap overstrength is accounted for.  In this example snow loads, S are zero.  This equation
can be expressed in terms of the total dead load, DT, and live load, L, given in Table D-2, as follows:

E0TDS QL5.0D)S2.02.1( Ω+++ (Eq D-23)

The loads expressed in Equation D-23 are now divided between the number of frames that make up
the short-direction lateral-load-resisting system.  The barracks building has a total of nine such
frames.  The loads are distributed based on the tributary area of each frame.  Because the end bays
have only half the tributary area, the loads are divided by the number of frames minus one, or also
stated as the number of bays as seen in Table D-6.  The vertical load resisting members are the
shear panel columns and individual studs, and these are distributed fairly uniformly in plan throughout
the building.  It is assumed that vertical loads are distributed to these studs in proportion to their area,
because of the uniform distribution of columns and individual studs in throughout the building in plan
(normally gravity loads would be distributed based on tributary area).

                                                       
6 Asterisk designates selected straps.

Strap Yield Strap Design Lat Defl Applied Elastic Defl Design Allow

Panel Panel Strap Strap Strap Initial Lat Stress Lat Yield Shear at Strap Story Lateral Amp Import Story Stability Story
Width Height Faces Width Thickness Stiffness of Strap Capacity Strength Yielding Shear Defl Factor Factor Drifts Coeff Drifts

W H ns bs ts ks Fsy Qsy φtQsy δsy VxS δxe Cd I ∆ θ ∆a

(in) (in) (#) (in) (ga) (in) (k/in) (ksi) (k) (k) (in) (kips) (in) (in) (in)

3rd Floor 132 101.5 1 4 14 0.0747 41 33 7.8 7.4 0.239 6.71 0.205 3.5 1.0 0.718 0.0008 2.03

3rd Floor* 132 101.5 2 4 18 0.0478 53 33 10.0 9.5 0.239 6.71 0.160 3.5 1.0 0.561 0.0006 2.03

2nd Floor 140 113.5 2 6 14 0.0747 112 33 23.0 21.8 0.264 18.52 0.213 3.5 1.0 0.745 0.0015 2.27

1st Floor 140 109.5 2 6 12 0.1046 161 33 32.6 31.0 0.257 24.38 0.192 3.5 1.0 0.672 0.0020 2.19

1st Floor* 140 109.5 2 8 14 0.0747 154 33 31.1 29.5 0.257 24.38 0.201 3.5 1.0 0.705 0.0021 2.19
1st Floor 140 109.5 2 6 14 0.0747 115 50 35.3 33.5 0.389 24.38 0.269 3.5 1.0 0.94 0.0029 2.19
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Trial column stud sizes are selected as summarized in Table D-7.  Each frame has two shear panels
in the short direction of the building, and each shear panel has two columns so that the 1st, 2nd and 3rd

floor columns have four, three and two studs, respectively.  This table also summarizes the size of
individual studs for the purpose of determining the area of the column studs relative to all other studs.
The individual studs include the interior studs inside the shear panels plus all additional individual
studs making up the bearing walls in this short-direction frame of the building.

Table D-6.  Gravity Load Calculations.

Table D-7.  Trial Stud Sizes and Quantities for One Short-Direction Frame.
Number of Column StudsLevel Size of Column Studs

Short
Direction

Long
Direction

Size of Individual
Studs

Number of
Individual

Studs
3rd Floor 2” x 6” x 48 mil (18 ga) 8 8 2” x 6” x 30 mil (22 ga) 68
2nd Floor 2” x 6” x 75 mil (14 ga) 12 12 2” x 6” x 36 mil (20 ga) 68
1st Floor 2” x 6” x 75 mil (14 ga) 16 16 2” x 6” x 36 mil (20 ga) 68

Table D-6 summarizes the area calculations based on the trial stud sizes.  This table shows that 25,
21, and 14% of the total gravity load in the tributary area of one short-direction frame is carried by the
short direction shear wall columns.  The remaining gravity loads are carried by individual studs and
shear panel column studs in the long direction of the building.  These gravity loads are summarized in
Table D-6.

The Ω0QE, term in Equation D-23 accounts for material overstrength in the diagonal straps.  The
vertical component in the straps will place additional compressive loads in the columns.  The total
column axial load at the maximum ultimate stress in the diagonal straps, Pvumax, is determined from
Equation 3-5, and is repeated below:












+
+=

22sssmaxsu
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H
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2
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P (Eq D-24)

Table D-8 gives values for Pvumax for each trial shear wall column at each floor in the short-direction
frame of the barracks building.

b.  Column Axial Capacity.  Table D-8 also presents trial column configurations defined in
terms of their yield stress, Fcy, column stud or structural tubing material thickness, tc number of studs
per column, panel thickness, bc and column depth, hc.  The panel thickness is the column width in the
out-of-plane direction of the panel and column depth is the column width in the in-plane direction of
the panel.  Each of the column studs are 6 inches deep with a 2 inch wide flange.  They are welded
together to form a closed column section and are oriented so that the stud flanges are parallel to the
plane of the shear panels (see Panels A1 and A2 in Appendix B).  In this orientation, the column
depth, hc is simply the number of studs per column times 2 inches.  Table D-9 presents the column

Total Total Short # Studs # Studs Area/ Area of # Ind Stud Area/ Area of % Gravity Gravity Gravity

Dead Floor Dir # in Short in Long Column Short in Short Indiv Indiv & Carried by /Frame /Frame

Panel SDS Load Live of bays Dir Col Dir Col Stud Dir Col & Long Stud Long Dir Short Dir Short Dir Short Dir

Level DT=D+EW+IW Load, L nS-1  As AcS Dir As Col Studs Columns GLmax GLmin

(g) (kips) (kips) (in2) (in2) (in2) AI&cL (in
2) (%) (kips) (kips)

3rd 0.82 228 0 8 8 8 0.478 3.82 68 0.299 24.16 14% 5.3 2.9

Cumulative 228 0 5.3 2.9

2nd 0.82 507 403 8 12 12 0.747 8.96 68 0.359 33.38 21% 23.6 9.9

Cumulative 736 403 29.0 12.8

1st 0.82 511 403 8 16 16 0.747 11.95 68 0.359 36.36 25% 27.8 11.6
Cumulative 1247 807 56.8 24.4
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capacity calculations.  This table gives the column nominal areas, Ac, distance to the extreme fiber, c,
in-plane and out-of-plane moments of inertia and radius of gyration.  The columns are conservatively
assumed to be pinned at their tops and bottom (limited moment resistance when the full axial load is
applied) so that the effective length factor, K is 1.0.

Table D-8.  Column Design for Cold-Formed Steel Shear Panels – Barracks Example.7

Table D-9.  Column Capacity Calculations for Shear Panels – Barracks Example.8

The last row in Table D-8 and D-9 is for a panel with columns made up of 6 x 6 x 3/16 inch structural
tubing members (Panel D configuration).  The tubing material is ASTM A500 Grade B, with minimum
(design) yield stress, Fcy and minimum ultimate stress, Fcu values of 46 ksi and 58 ksi, respectively.
Similar to the column studs, it is assumed that 1.5 inch wide holes will be drilled through the faces of
the column that are out-of-plane to the shear panel.  These holes are for conduit.

The elastic flexural stress, Fe shown in Table D-9 is calculated based on Equation C-39, and, λc is
calculated based on Equation C-38.  The nominal axial stress, Fn is then calculated based on either
Equation C-36 or C-37, depending on the value of λc.

The effective areas, Ae, of the columns are calculated according to Equation C-41.  Values of the
terms used to define this area are also given in Table D-9.  Finally, the column design strength, P, is
calculated according to Equation C-35.  Values of P are given in Table D-9 for each trial column.
Through an iterative process in the spreadsheet program, trial column configurations were defined
where P exceeds the column axial load at the maximum ultimate stress in the diagonal straps, Pvumax.
From these results the column configurations marked with an asterisk in Table D-8 and D-9 were
selected for the three floor levels9.

                                                       
7 Asterisk designates selected columns.
8 Asterisk designates selected columns.
9 The second floor panel shown in these tables is not marked with an asterisk because the panel anchors are inadequate,
which may require an increase in column stud thickness, tc.

Diagonal Max Ult Number Max Gravity Column Column Column Number Panel Col Stud

Strap Ult Strap of Shear Load/ Axial load Yield Ultimate Column of Studs Thickness Flange Column
Stress Stress Panels Panel at Strap Ult Stress Stress Thickness /Column /Column Width Depth

Fu Fsumax /Frame GLmax Pvumax Fcy Fcu tc n bc bf hc

(ksi) (ksi) (kips) (k) (ksi) (ksi) (ga) (in) (in) (in) (in)

3rd Floor 45 68 2 2.66 13.6 33 45 16 0.0598 2 6.0 2.0 4.0
3rd Floor* 45 68 2 2.66 17.1 33 45 14 0.0747 2 6.0 2.0 4.0

2nd Floor 45 68 2 14.48 45.3 50 65 14 0.0747 3 6.0 2.0 6.0

1st Floor 45 68 2 28.38 66.4 50 65 12 0.1046 3 6.0 2.0 6.0
1st Floor* 45 68 2 28.38 63.9 50 65 12 0.1046 4 6.0 2.0 8.0
1st Floor 65 81 2 28.38 59.1 46 58 0.1875 1 6.0 6.0 6.0

Nominal Distance        In-Plane    Out-of-Plane Eff Elastic Nominal Knockout Eff Column

Column to Extreme Mom of Radius of Mom of Radius of Length Flexural Axial hole Flat Slenderness Eff Column Design

Area Fiber Inertia Gyration Inertia Gyration Factor Stress Stress dia Width factor Width Area Strength

Ac c Ix ry Iy rx K Fe λc Fn dh w λ b Ae P
(in2) (in) (in4) (in) (in4) (in) (ksi) (ksi) (in) (in) (in2) (kips)

3rd Floor 1.20 2.00 3.37 1.68 6.25 2.29 1 78 0.65 27.66 1.5 5.761 1.565 2.40 0.794 18.7

3rd Floor* 1.49 2.00 4.16 1.67 7.74 2.28 1 77 0.65 27.61 1.5 5.701 1.239 2.82 1.063 24.9

2nd Floor 2.24 3.21 10.72 2.19 11.61 2.28 1 106 0.69 41.06 1.5 5.701 1.511 2.43 1.508 52.6

1st Floor 3.14 3.21 14.80 2.17 15.99 2.26 1 113 0.67 41.52 1.5 5.582 1.062 3.04 2.34 82.6

1st Floor* 4.18 4.00 32.40 2.78 21.31 2.26 1 122 0.64 42.09 1.5 5.582 1.069 3.02 3.114 111.4
1st Floor 4.27 3.00 23.8 2.36 23.8 2.36 1 133 0.59 39.80 1.5 5.250 0.546 3.75 3.708 125.4
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c.  Column Bending and Composite Behavior.  The shear panel anchor guidance will provide
moment resistance at the column ends, especially when no axial load is applied to the columns.  The
columns built up from studs must be designed to act as a composite cross-section.  Table D-10 gives
the intermittent weld length, L (2 inches for each built-up column in Table D-10) and maximum center-
to-center intermittent weld spacing, smax needed to ensure composite behavior of the columns.   This
is based on Equation 3-9.  Based on the values of smax given in Table D-10, actual weld spacing is
selected that round down to the nearest full inch from the values given in Table D-10.  These welds
are made between all studs in the column and begin at both ends of the columns.

d.  Column Combined Axial and Moment Capacity.  The combination of axial and bending
load is evaluated for each trial shear panel.  For each case, an interaction value is determined
according to Equation 3-10.  Table D-10 shows that the interaction values, I fall below 1.0 for all
columns in this example.

Table D-10.  Column Intermittent Weld Design, and Combined Axial and Moment Capacity.

e.  Column Shear Capacity.  The column design shear capacity, VC is calculated according
Equation C-46 for each trial column.  The values are shown in the second column of Table D-11.
These are below the strap maximum estimated ultimate lateral capacity (Phumax = Ω0QE) calculated
according to Equation 3-24, with values given in the third column of Table D-11.  Therefore, the
additional shear capacity from anchors is needed to resist the maximum lateral force, as shown in
Paragraph 12a.

D11.  DIAGONAL STRAP-TO-COLUMN CONNECTIONS.  Diagonal strap-to-column connections are
designed to resist the maximum estimated ultimate force in the strap, Psu defined by Equation 3-15.
Values of Psu are given in the second column of Table D-12 for each panel.

a.  Screwed Fastener Connection Design.  All screws used in this example are #10 self-
tapping hex head screws, as this is the largest practical size that will not interfere with drywall
installation.  The nominal screw diameter, d for #10 screws is 0.190 inches.10  The following fastener
layout guidance is based on the Screwed Fastener Connection Design guidance in Chapter 3,
Paragraph 9a:

                                                       
10 AISI Specification Commentary, Table C-E4-1.

Max Area on Distance Mom of Weld Intermittent Strap Max Est Applied Column Column

Column 1 Side of to Neutral Column Shear/ Weld Max o.c. Max Yield Lat Defl Moment Nominal Interaction
Shear Crit Weld Axis Area Length Length Spacing Stress at Strap @ δsymax Moment

Vcm A y Q q L smax Fsymax Yield Ma Mnx I 

(kips) (in2) (in) (in3) (k/in) (in) (in) (ksi) δsymax (in) (k-in) (k-in)

1.1 0.60 1.60 1.0 0.3 2.0 14.3 66 0.478 33.7 55.6 0.952

1.4 0.75 1.60 1.2 0.4 2.0 14.3 66 0.478 41.8 68.7 0.954

2.9 1.49 1.61 2.4 0.7 2.0 12.1 66 0.528 100.4 191.9 0.928

4.2 2.09 1.62 3.4 1.0 2.0 11.7 66 0.514 144.4 265.2 0.967

7.4 2.09 2.20 4.6 1.1 2.0 10.7 66 0.514 274.3 405.0 0.983
75 0.584 236.0 364.9 0.947
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Table D-11. Column and Anchor Shear Design.

Table D-12.  Screwed Connection Design.

• Minimum distance between centers of fasteners is 3d = 0.57 inches.

• Minimum distance from centers of fasteners to edge of connected part is 3d = 0.57
inches.

• For connections subjected to shear forces in only one direction, the minimum distance
from centers of fasteners to the edge of a connected part perpendicular to the force is
1.5d = 0.29 inches.

The design shear and pull-over per screw, Ps shall be calculated according to Equations C-47
through C-53 based on the thicknesses of the connected members.  Table D-12 gives the ratio of t2/t1
and the resulting design shear per screw as defined by these equations.   A screw head diameter, dw
of 0.402 inches11 is used for the #10 hex head screws.

Finally, the number of screws required at each diagonal strap-to-column connection, nscrews is
calculated according to Equation 3-16 for each trial panel configuration.  These quantities are given in
Table D-12.

Ultimate shear values from the manufacturer’s data12, Pu based on the smaller thickness of the
members being connected are used to calculate a nominal screw shear strength, Pns according to the
following equation:

25.1
P

P u
ns = (Eq D-25)

                                                       
11 This dimension was measured from #10 hex washer head screws (ITW Buildex Part Number 1129000) used in test panels at
USACERL.  Measurement was made using a Vernier caliper and the diameter at the base of the washer head was consistently
0.402 inches ± 0.004 inches (10.2 mm ± 0.1 mm).
12 From ITW Buildex Catalog for #10 fasteners with #3 drill point.

Column Strap Yield Anchor Total

Shear Lat Ult Stress of Angle Shear Shear
Strength Capacity Angle Thickness Strength Strength

VC Phumax=Ω0QE FyA tA VA VT

(kips) (kips) (ksi) (in) (kips) (kips)

3rd Floor 4.7 16.0 36 0.250 32.4 69.5

3rd Floor* 11.8 20.5 36 0.250 32.4 76.6

2nd Floor 26.9 47.0 36 0.250 32.4 91.7

1st Floor 37.7 66.7 36 0.250 32.4 102.5

1st Floor* 50.2 63.5 36 0.250 32.4 115.0
1st Floor 62.1 57.4 36 0.500 64.8 191.7

Max Est Nominal Diagonal Strap-to-Column Conn Design Number

Ult Strap Screw Strap/Col Tilting Bearing1 Bearing2 Nominal Screw Nominal Manufacturer's Shear Screws 
Force Dia Thickness Eq C-48 Eq C-49&51 Eq C-50&52 Shear head dia Pull-over Nom Shear /Screw /Face

Psu d Ratio Pns Pns Pns Pns dw Pnov Pns Ps nscrews

(kips) (in) (t2/t1) (kips) (kips) (kips) (kips) (in) (kips) (kips) (kips) (#)

3rd Floor 20.2 0.19 0.80 1.205 1.724 1.380 1.205 0.402 2.027 1.232 0.602 33

3rd Floor* 25.8 0.19 1.56 1.682 1.103 1.724 1.103 0.402 1.297 1.013 0.506 25
2nd Floor 60.5 0.19 1.00 2.430 1.724 2.491 1.724 0.402 2.027 1.242 0.621 49

1st Floor 84.7 0.19 1.00 4.026 2.415 3.488 2.415 0.402 2.838 1.242 0.621 68

1st Floor* 80.7 0.19 1.40 4.026 1.724 3.488 1.724 0.402 2.027 1.242 0.621 65
1st Floor 72.8
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Equation D-25 is not included in the guidance in Chapter 3 or Appendix C because the format of
manufacturer’s test data is unknown and may need to be evaluated on a case-by-case basis as
shown in this example.  Table D-12 provides values for this nominal shear strength based on
manufacture’s fastener shear strength and Equation D-25.  If these values are less than other
nominal values based on equations C-48 through C-53, these values will control and will be used in
Equation C-47 to calculate the design shear per fastener, Ps.  Table D-12 presents Ps based on the
overall minimum nominal shear or pull over strength.  In this example problem the manufacturer’s
fastener shear strength data controls the nominal fastener shear strength for all panel configurations
except for the one shown on the first row of Table D-12.

The number of screws at each diagonal strap-to-column connection, nscrews, shown in Table D-12, is
very large and the use of larger screws or a welded connection should be considered.  Still, each of
these connections may be constructed within the overlap area of the strap and column and within the
spacing and edge distance requirements given above.  The most difficult joint to lay out is the one in
the first row, which is based on installing diagonal straps on only one face of the shear panels.  The
column is 4 inches wide and the strap is also 4 inches wide and is oriented at an angle based on the
width, W and height, H of the overall panel given in Table D-5.  A layout of the fasteners is selected
that will keep the column critical shear plane as close as possible to the track, while maximizing the
net area for rupture strength evaluation.  A trial layout is shown in Figure D-4.  This connection has 5
fasteners at the first row against the track, and 6, 6, 6, 6, 6 and 5 fasteners in the subsequent rows
moving away from the joint.  These fasteners are spaced at 9/16 inches on center horizontally and ½
inch on center vertically.  The other diagonal strap-to-column screwed connections in Table D-12 are
laid-out in a similar manner and are shown in Figures D-5 – D-8.

b.  Design Rupture Strength Between Fasteners.  Figures D-4 through D-8 show the critical
diagonal strap rupture surface, for which the rupture strength is calculated.   The rupture surface
located along the inside edge of the column and along a horizontal plane will be loaded at
approximately a 45 degree angle to the rupture surface.  Therefore the average of the shear strength
and tensile strength expressed by Equations 3-17 and 3-18 are used for determining the design
shear/tension strength, VT along this surface as follows:

nvtuvt AF8.0VT φ= (Eq D-26)

Where:
φvt = the shear tensile rupture resistance factor, equal to 0.75
Anvt = the net area subjected to load at approximately 45 degrees.

The design shear/tension, VT and tensile, T rupture strengths are calculated according to Equations
D-26 and 3-18, based on a trial layout of the fasteners in each diagonal strap-to-column connection.
The use of #10 screws result in a very large number of screws at each connection as seen in Table
D-12 and Figures D-4 through D-8.   The screw pattern must stay within the spacing and edge
distance limitations given above.

When the strap-to-column rupture strength is evaluated based on Equation 3-19, as modified with
Equation D-26 the resistance factors in Equations D-26 and 3-18 may be increased to 1.0, because
of the ASTM minimum material requirement on Fu/Fy.  All of the trial diagonal strap-to-column
connections do not meet Equation 3-19, as can be seen by comparing Psy and (VT + T)ns in Table D-
13.  The achieved resistance factor (φa) for Equation D-26 and 3-18 is shown in Table D-13 for each
of these connections.   This achieved resistance factor is expressed as follows:

)AA8.0(Fn
P

ntnvtus

sy
a +

=φ (Eq D-27)

This factor is well below 1.0 for all connections except the first row (3rd Floor case with a diagonal
strap on only one face of the panel).  The shear panel shown in the first row (Figure D-4) is therefore
an unacceptable configuration, and the design shown in the second row (Figure D-5) is selected for
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the 3rd floor shear panels.  For the other shear panels the resistance factors are above 0.75, but are
judged to be acceptable because of the ATSM requirement on Fu/Fy.

Table D-13. Screwed Connection Rupture Strength and Welded Connection Design.

c.  Welded Connection Design.  Figure D-9 shows a trial layout of a welded diagonal strap-to-
column connection.  All welds in this connection have a thickness, t equal the thickness of the
diagonal strap (0.075 inches).  This is much less than 0.15 inches, so weld failure through the weld
throat (Equation C-57) need not be considered.  Details on the strap and column sizing are given in
the last row of Tables D-5 and D-8.  All welds have a L/t ratio much greater than 25, so that Equation
C-55 is used to define the longitudinal weld capacity.  The top edge of this connection shown in
Figure D-9 is loaded in the longitudinal direction and its design shear strength is defined according to
Equation C-55.  The diagonal edges at the end of the diagonal strap are loaded close to 45 degrees,
so that an average of Equation C-55 and C-56 defines the weld capacity along these edges.
Therefore, the longitudinal/transverse design shear strength (PLT) may be expressed as follows:

uLT tLF87.0P φ= (Eq D-28)

Where:
φ = 0.58, which is an average of the resistance factors for longitudinal and transverse loading

expressed in Equations C-55 and C-56.

Table D-13 gives the weld thickness, length of welds loaded in the longitudinal and
longitudinal/transverse directions.  Table D-13 also gives the design capacity of the longitudinal,
longitudinal/transverse and combined capacity ((PL + PLT)ns) expressed by Equation 3-21, as modified
by Equation D-28.  Comparing the total shear capacity and strap yield strength, Psy shows that this
connection detail meets the requirements of Equation 3-21.

D12.  SHEAR PANEL ANCHORS.  Panel anchors must be installed on both sides of the shear panel
columns.  These anchors are installed at both the top and bottom of the columns to anchor the panels
to the floor diaphragms both above and below the shear panels.  The anchors are needed to provide
the required shear, uplift and moment resistance from the eccentric diagonal strap loading of the
anchors.  The anchors will also provide limited moment resistance that will allow some moment frame
action of the columns, providing system redundancy and a widening of the hysteretic load/deflection
envelope.  The anchors consist of angle iron sections welded to the column, with loose steel plates
that are both bolted to the diaphragm using embedded anchor bolts (see Figures D4 through D9).

a.  Anchor Shear Capacity.  All of the trial columns shown in Table D-8 have insufficient
shear capacity by themselves and require additional shear capacity from their anchorage.  The
anchor angle irons increase the shear capacity.  Each angle leg extends beyond the critical shear
plane.  Figure D-4 shows such an anchorage made up with 6 inch long, L 4 x 4 x ¼ inch angle iron
sections welded to both sides of each column.  The anchor shear capacity is defined according to
Equation 3-22, and the combined column and anchor shear capacity is defined according to Equation

Strap Tension Tension Design Achieved Fillet Longitudinal Weld Long/Trans Weld Welded

Yield /Shear Net Rupture Resistance Weld Design Design Conn Total
Force Net Area Area Strength Factor Thickness Length Strength Length Strength Capacity

Psy Anvt Ant (VT+T)ns φa t L PL L PLT (PL+PLT)ns

(kips) (in2) (in2) (kips) (in) (in) (kips) (kips) (kips)

3rd Floor 9.9 0.218 0.028 6.8 1.082

3rd Floor* 12.6 0.044 0.134 11.5 0.825

2nd Floor 29.6 0.153 0.269 26.4 0.840

1st Floor 41.4 0.312 0.259 34.3 0.906

1st Floor* 39.4 0.288 0.299 35.7 0.828
1st Floor 44.8 0.0747 6.25 12.5 8.75 21.4 67.9
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3-23.   The column shear capacity, Vc was determined in Paragraph D10e according to Equation C-
46. Table D-14 shows the yield stress, width and thickness of the angles used in these anchors, so
that the combined shear strength of the columns and angles VT exceed Phumax (Equation 3-23).  Table
D-11 shows that combined shear strength VT exceeds Phumax for all the trial shear panels.

b.  Shear Panel Anchor Angle and Plate Design. The most critical load condition for anchors
is when the effects of gravity load and seismic forces counteract each other, as expressed by
Equation C-18.

Column-to-angle welds and angle sizes are selected for each trial configuration based on the
guidance in Tables 3-3 and 3-4.  For each case, the maximum weld thickness and angle thickness is
selected.  These sizes are shown in Table D-14 and Figures D-4 through D-9.  For each trial anchor,
a plate must be added as shown in Figures D-4 through D-9 (and Table D-14), to provide adequate
uplift resistance.  These plates will also add moment resistance.  Anchor angles and plates are
designed following the requirements of Equation 3-25, as shown in Table D-14 and D-15.

The capacity of the vertical column-to-angle welds at the corner of the columns assume double shear
(Equation C-59), because the effective thickness of this grove weld should be at least twice the
thickness of the column material.  This is because of the curvature of the column corner that the
grove weld will fill.  The anchor must provide moment resistance for the moment from the eccentric
loading of the diagonal strap, accounting for the maximum estimated yield overstrength of the strap
(PsymaxLs).  Any moment capacity beyond this is not required (i.e., Pcb in Equation 3-31 may equal
zero), but will provide beneficial column moment resistance.  However, at any load condition at least
one column will have little axial load and no diagonal strap load, so that the anchors will provide
significant moment resistance to provide some moment frame capacity in the shear panel.

Table D-14. Shear Panel Anchor Angle and Plate Design.

The panels in Rows 3 and 4 fail to meet the requirement of Equation 3-25, as can be seen in Table D-
15.  Row 3 (2nd Floor shear panels) is the worst case where the column-to-angle weld design
strength, PA is 3% below the applied load, based on the maximum estimated yield stress of the
diagonal straps.  This shear panel must be redesigned, which can be done by increasing the
thickness of the column material as the strength of the welds are directly proportional to the thickness
of the thinner material (see Equations C-56 and C-59).  The shear panel shown in Row 5 meets the
requirement of Equation 3-25 for the 1st Floor shear panel and this panel is selected for the 1st Floor.

Min Gravity Anchor Col/Anchor Anchor Angle Plate Angle

Load/ Uplift @ max Weld Yield Thickness Moment
Panel Strap Yield Thickness Stress Size Capacity

GLmin Pvymax tw FyA HA WA tA k tp MA

(kips) (kips) (in) (ksi) (in) (in) (in) (k-in)

3rd Floor 1.44 11.3 0.125 36 L 4 x 4 x 0.25 0.625 0.375 9.87

3rd Floor* 1.44 14.7 0.125 36 L 4 x 4 x 0.25 0.625 0.438 12.34

2nd Floor 6.38 34.1 0.125 36 L 4 x 4 x 0.25 0.625 0.563 18.41

1st Floor 12.21 44.9 0.125 36 L 4 x 4 x 0.25 0.625 0.688 26.01

1st Floor* 12.21 42.5 0.125 36 L 4 x 4 x 0.25 0.625 0.625 22.02
1st Floor 12.21 35.3 0.188 36 L 6 x 6 x 0.50 1.000 0.750 39.49
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Table D-15. Shear Panel Anchor Angle and Plate Design (continued).

Table D-16 presents the anchor (or column) moment capacity as defined by Equation 3-30.  Much of
this capacity is used to resist the maximum estimated applied moment from the eccentric loading of
the diagonal strap (PsymaxLs).  The uplift capacity per angle that remains to resist column bending, Pcb
should be greater than zero.  Table D-16 shows that the panels in Rows 3 and 4 have values slightly
below zero.  The panel in Row 3 shall be redesigned as stated earlier and the panel in Row 5 is
selected for the 1st Floor as stated earlier.

c.  Shear Panel Anchor Bolt Design.  Finally the anchor bolts that fasten the shear panels to
the reinforced concrete beam or slabs are designed.  The same detail is used at both the top and
bottom of the columns.  The anchor bolts are sized based on the bolt shear strength, Pv, tensile
strength, Pt and cone failure strength, Pc.  Table D-16 and Figures D-4 through D-9 show that two
ASTM A-325 anchor bolts are cast into the concrete on both sides of the columns at each anchor, for
a total of four bolts per anchor, nAB. The anchor bolts would be positioned with a template before the
concrete is cast.  Alternatively, the same bolts that anchor the top of one panel could extend through
the concrete to anchor the bottom of the panel above.

Table D-16. Anchor Moment and Anchor Bolt Shear Design.

The design anchor bolt shear strength, Pv must exceed the applied shear load PhAB (Equation 3-33).
Values of Pv, based on Equation 3-34 are given in Table D-16 for each trial panel.  In every case
these values exceed PhAB.  The design tensile strength, Pt and cone failure strength, Pc must exceed
the tensile stress per bolt, PtAB.  Values for Pt, based on Equation 3-35 and Pc, based on Equation C-
60 are given in Table D-17 for each trial panel.  In every case these values exceed PtAB.  The
embedment lengths for the anchor bolts, lAB shown in Table D-17 are very large.  If possible the same
anchor bolts should rather extend through the concrete beam or slab to the shear panel above or
below, thus anchoring the anchor bolts.  The minimum edge distance, m to prevent side cone
concrete failure is defined based on Equation C-63 and values are given in the last column of Table
D-17.  Figures D-4 through D-9 show the trial anchor design for each row in Tables D-14 through D-
17.  For each floor level the asterisk indicates the selected panel design.

Distance from Anchor Bolts to: Tensile Tensile Angle Angle Angle

Column Bolt Nut Crit Bending Force Force/ Horiz Weld Vert Weld Tot Weld
Face Width Plane Avail/angle Angle Strength Strength Strength

dc W db PM Pvymax/2+PM PT PG PA

(in) (in) (in) (kips) (kips) (kips) (kips) (kips)

3rd Floor 2.5 1.44 1.16 11.42 17.08 9.69 17.76 27.45

3rd Floor* 2.5 1.44 1.16 14.01 21.34 12.10 11.09 23.19

2nd Floor 2.5 1.63 1.06 17.63 34.66 17.48 16.02 33.50

1st Floor 2.6 1.81 1.09 25.09 47.56 24.48 22.44 46.91

1st Floor* 2.5 1.81 0.97 24.22 45.46 24.48 22.44 46.91
1st Floor 3.5 1.81 1.59 31.90 49.55 39.15 53.83 92.98

Column Strap Moment Angle Anchor Applied Bolt Nom Bolt Shear

Moment Max Yield Arm of Uplift for # Anchor Bolt Shear/ Shear Design
Capacity Strength Dia Strap Col Bending Bolts/col Dia Bolt Strength Strength

Mc Psymax Ls Pcb nAB dAB PhAB Fv Pv

(k-in) (kips) (in) (kips) (in) (in) (kips) (ksi) (kips)

3rd Floor 55.69 19.72 1.60 4.95 4 3/4 4.00 60 19.88

3rd Floor* 68.31 25.24 2.00 3.66 4 3/4 5.12 60 19.88

2nd Floor 121.21 59.16 2.10 -0.44 4 1 11.75 60 35.34

1st Floor 172.51 82.84 2.40 -3.83 4 1 1/8 16.68 60 44.73

1st Floor* 214.93 78.88 2.20 4.66 4 1 1/8 15.89 60 44.73
1st Floor 239.22 67.23 2.20 12.17 4 1 1/8 14.34 60 44.73
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Table D-17. Anchor Bolt Tensile and Cone Failure Design.

D13.  SUMMARY OF EXAMPLE DESIGN PROBLEM RESULTS.   The trial shear panel for the 2nd

Floor of the barracks building must be re-designed for the column-to-anchor weld detail.  Figures D-5
and D-8 show the details for the selected panels.  Details for the entire panels are given in Tables D-5
and D-8 through D-17.

Bolt Nom Bolt Tensile Out-of-plane Anchor Bolt Stress Concrete Cone Min

Tensile Design Force/ Space btw Embedment Cone Compressive Design Edge
Strength Strength Bolt Bolts Length Area Strength Strength Distance

Ft Pt PtAB dc-c lAB Ac f'c Pc m

(ksi) (kips) (kips) (in) (in) (in2) (psi) (kips) (in)

3rd Floor 90 29.82 22.06 3.5 6.0 110 4000 23.58 3.31

3rd Floor* 90 29.82 27.57 3.5 7.0 143 4000 30.86 3.31

2nd Floor 90 53.01 44.77 3.5 9.0 224 4000 48.27 4.42

1st Floor 90 67.10 67.01 3.0 11.0 315 4000 67.84 4.97

1st Floor* 90 67.10 58.73 3.0 10.0 265 5000 63.61 4.70
1st Floor 90 67.10 56.99 3.0 10.0 265 5000 63.61 4.70
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Figure D-1. Design response spectrum for Fort Lewis, Washington barracks building.

Figure D-2. Schematic drawing of barracks building example.
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Figure D-3. Barracks building short direction elevation and plan views.
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Figure D-4. Example connection/anchorage detail – 1st row of Tables D-5, D-8 – D-17.
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Figure D-5. Example connection/anchorage detail – 2nd row of Tables D-5, D-8 - D-17.
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Figure D-6. Example connection/anchorage detail – 3rd row of Tables D-5, D-8 - D.17.
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Figure D-7. Example connection/anchorage detail - 4th row of Tables D-5, D-8 – D-17.
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Figure D-8.  Example connection/anchorage detail – 5th row of Tables D-5, D-8 – D-17.
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Figure D-9. Example connection/anchorage detail - 6th row of Tables D-5, D-8 - D-17.
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APPENDIX E

PROTOTYPE SHEAR PANELS FOR COLD-FORMED STEEL SEISMIC DESIGN
(English I-P units only)

E1.  INTRODUCTION.  This appendix provides tabular data for the selection of possible prototype
shear panels that may be used in the seismic design of cold-formed steel structures.  These panels
were developed for an example problem presented in Appendix D using the design guidance
presented in Chapter 3 and Appendix C.  Each shear panel given in Table E-1 is defined in Figures
D5, D8 and D9 as indicated in Table E-1.

E2.  DEFINITION OF TERMS.   The prototype shear panels given in Table E-1 shall be used based
on the following definition of terms:

Vx = the maximum story shear per shear panel, based on Equation C-27 in Appendix C.
GLmax = the maximum gravity load per shear panel, based on Equation C-17 in Appendix C.
GLmin = the minimum gravity load per shear panel, based on Equation C-18 in Appendix C.

E3.  PROTOTYPE PANEL LOAD TABLE.  Table E-1 provides the tabular data needed to select
prototype shear panels.

Table E-1.  Prototype Shear Panel Load Capacities.

Vx GLmax GLmin

(kips) (kips) (kips)
Figure D5 9.5 6.0 -13.2
Figure D8 29.5 34.1 -6.5
Figure D9 33.5 44.1 -36.5
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APPENDIX F

SEISMIC QUALIFICATION PROCEDURE AND ACCEPTANCE CRITERIA FOR OTHER SHEAR
PANEL CONFIGURATIONS

F1.  SCOPE. This appendix presents the test procedure, acceptance criteria and documentation
requirements needed to demonstrate the acceptability of cold-formed steel shear panel configurations
different than the specific system defined in Chapter 3.  Acceptable panels are limited to cold-formed
steel shear panels with diagonal straps or full panel sheets as the lateral load resisting elements.  The
columns shall be constructed with cold-formed or hot-rolled structural steel.  This is for the
qualification of a prototype of the specific panel that will be used in construction.  Qualification
requires the testing of three specimens.   All panel tests shall represent full panel system tests of all
the panel components including connections, and anchors.

F2.  COUPON TESTS OF ALL TEST PANEL MATERIALS.  Coupon tests shall be performed on all
materials that may contribute to the structural performance of the test panels.  At least three coupons
shall be tested from each lot of each type of material.  Coupons shall be prepared and tested
following the provisions of ASTM A 370.  Materials that contribute to the ductility of the shear panels
shall have a total elongation of at least 10% for a two-inch long gage length.  All coupon test results
shall be plotted in a test report, in terms of stress versus strain.  All coupon test results shall also be
summarized in a table in the format shown in Table F-1.  The data in this table shall be the average
value of the three or more coupons of the particular component.

Table F-1.  Format for Tabular Coupon Test Results.
Structural

Component
of Coupon

Design Yield
Stress

(MPa or ksi)

0.2% Offset*
Yield Strain
(mm/mm)

0.2% Offset *
Yield Stress
(MPa or ksi)

Maximum
Load
Strain

(mm/mm)

Maximum
Stress

(MPa or
ksi)

Max Stress
0.2% Offset
Yield Stress

Component
#1

Component
#2

* See USACERL TR Chapter 4 for definitions of 0.2% offset yield strain and stress

F3.  COUPON TEST OF ALL FIELD PANEL MATERIALS.  Coupon tests shall be performed on all
materials that contribute to the structural performance of the field panels.  The field panels shall be
identical to the prototype-tested panels.  At least three coupons of each material shall be tested.
Coupons shall be prepared and tested following the provisions of ASTM A 370.  Materials that
contribute to the ductility of the shear panels shall have a total elongation of at least 10% for a two-
inch long gage length.  All coupon test results shall be plotted in a test report, in terms of stress
versus strain.  All coupon test results shall also be summarized in a table in the format shown in
Table F-1.  The data in this table shall be the average value of the three or more coupons of the
particular component.  The field diagonal straps or full panel sheets shall have a coupon yield stress
(0.2% offset) not greater than 5% above or not less than 10% below the test panel coupon yield
stress (0.2% offset).  The field material coupons for all other structural elements shall have coupon
yield stress (0.2% offset) not less than the test panel coupon yield stress (0.2% offset).

F4.  TEST CONFIGURATION.  Full-scale test panels shall be tested with both monotonic (pushover
in one direction) and cyclic loading.   The panels shall be anchored to a base beam and top beam in a
manner representative of the field installation.  The base beam shall resist any slippage, out-of-plane
movement or rotation in any direction.  Vertical load shall be applied to the shear panel through the
top beam, at a level representative of potential gravity loads in the field.   The amount of vertical load
applied should consider the worst case condition for the most vulnerable panel components.  For
example, the minimal vertical load may provide the most severe loading for the anchors, while the
maximum vertical would provide the worst case loading for column buckling.  This vertical load shall
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be held constant throughout each test.  The top beam shall be held horizontal during all tests, as this
represents the field conditions when the panel is assembled in a building.  Figure F-1 shows the test
configuration and instrumentation plan for shear panels tested at USACERL in order to illustrate the
load configuration.  In the USACERL tests, stroke control was used to keep the two vertical actuators
at the same length, which held the top beam horizontal.  The combined vertical force was held
constant manually.

Figure F-1.  Schematic drawing showing sensor locations.

F5.  INSTRUMENTATION.  Table F-2 defines the instrumentation required for all shear panel tests.
Figure F-1 shows the location and orientation of all sensors.  Table F-2 describes the purpose of each
sensor.  The purpose of most gages is to ensure that no unwanted motion takes place and for test
control.  The only data used in reporting panel performance are the 1st, 2nd, 3rd and 4th channels in
Table F-2.  The vertical actuator force measurements (FVS and FVN in Table F-2 and Figure F-1) are
required to defined total shear force when deflections reach large amplitudes, at which point the
horizontal components of these forces become significant.  This total shear force, TSF is determined
as follows:

þ
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û

ù
ê
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è

æ
-=

L
DH

arctansinTVFFHTSF (Eq F-1)

Where:
FH = the measured horizontal actuator force (see Table F-2 or Figure F-1).
TVF = the total vertical actuator force, equal to FVS plus FVN (Table F-2 or Figure F-1).
DH = the measured horizontal displacement (Table F-2 or Figure F-1).
L = the length of the vertical actuators, with the vertical load applied, but not horizontal
displacement.



CEMP-E TI 809-07
NOVEMBER 1998

F-3

Table F-2.  Cold-Formed Steel Shear Panel Instrumentation.

Note:  * Linear Resistance Deflection Gauge, often called a Yo-Yo Gauge.

F6.  TEST REQUIREMENTS.  For each shear panel qualified, three specimens shall be fabricated
and tested.  This assumes only minor variation in panel performance for a given shear panel.  If large
variations occur more than three specimens shall be tested and a statistical evaluation of panel
performance may be required.  For panels with minor variation, one specimen shall be tested
monotonically and two shall be tested cyclically as defined below.  All tests, both monotonic and
cyclic shall use stroke control, loading the panels laterally at a constant displacement per minute.
The vertical load shall be held constant and the top beam shall be held horizontal throughout each
test as described in Paragraph F4, Test Configuration.  Both monotonic and cyclic tests shall be
conducted up to deflections that cause ultimate failure of the shear panels, or reach the limits of the
test equipment, but shall not be less than 10 times the lateral yield displacement of the test panel, dy.
These are very large deflections, well beyond acceptable drift limits, but are needed to ensure that
brittle failures (sudden loss of lateral or vertical load carrying capacity) do not occur near the useful
deflection range of the panel.

a.  Monotonic Test Protocol.  A single specimen of each shear panel shall be loaded in one
direction (monotonic) at a constant stroke rate that is slow enough to allow careful observation of
panel performance and failure progression1.  These observations shall include documentation of
panel behavior through a log of observations with respect to displacement and photographs.  Load
versus deflection (TSF versus DH) shall be plotted to determine the measured lateral yield
displacement dy.  This value shall be used in defining the cyclic test protocol.

b.  Cyclic Test Protocol.  A minimum of two specimens of each panel configuration shall be
loaded cyclically at a constant stroke rate that is slow enough to allow careful observation of panel
performance and failure progression2.  These observations shall include documentation of panel
behavior through a log of observations with respect to displacement and photographs.  Load versus
deflection (TSF versus DH) shall be plotted to create load/deflection hysteretic envelopes.  The cyclic
load protocol follows a standard method, so that test results may be compared with cyclic test results
of other systems.  The protocol defined here is similar to SAC23 guidelines that have been modified to
scale to the lateral yield deflection as described in ATC-244.  The SAC recommended loading
histories call for loading with a deformation parameter based on interstory drift angle, q defined as

                                                          
1 Monotonic tests conducted at USACERL used a stroke rate of 0.5 inches per minute.
2 Cyclic tests conducted at USACERL used a stroke rate of 3 and 6 inches per minute.  The faster stroke rate was used for
panels tested cyclically beyond 10 inches (20 inches peak to peak).
3 SAC Testing Programs and Loading Histories, unpublished guidance, 1997.
4 Applied Technical Council (ATC) 24, Guidelines for Cyclic Seismic Testing of Components of Steel Structures, 1992.

Channel Sensor Measurement, Direction,
# Type Location and Symbol Purpose
1 Load cell Force Horizontal, FH Horizontal actuator load measurement
2 LVDT Deflection Horizontal, DH Horizontal deflection, shear panel deformation
3 Load cell Force Vertical South, FVS Manual vertical load control (25k total load w/#5)
4 LVDT Deflection Vertical South, DVS Stroke (tied to #6)
5 Load cell Force Vertical North, FVN Load (summed with #3, for 25k total load)
6 LVDT Deflection Vertical North, DVN Controlled by #4 stroke feedback
7 LVDT Defl Horiz Bot Track, DHBT To ensure no slippage
8 LVDT Defl Vert South Bot Track, DVSBT To ensure no uplift
9 LVDT Defl Vert North Bot Track, DVNBT To ensure no uplift

10 LRDG* (20") Defl Horiz Top Track, DHTT Check for shear panel deformation - same as #2
11 LRDG (10") Defl Vert South Top Track, DVSTT Vertical panel/column deformation & rotation check
12 LRDG (10") Defl Vert North Top Track, DVNTT Vertical panel/column deformation & rotation check
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interstory height over interstory displacement.  The commentary to the SAC document explains that
the interstory drift angle of 0.005 radians corresponds to a conservative estimate of the value that
would cause yield deformation.  Therefore, the load protocol defined by SAC in terms of drift angle
are scaled to the measured lateral yield deflection, dy to define the cyclic test steps as defined in
Table F-3.  This protocol calls for a set number of cycles at each of the deformation amplitudes
shown in Table F-3.  This protocol is illustrated by the deformation time history shown in Figure F-2,
which is based on a lateral yield deflection, dy of 0.4 inches and stroke rate of 6 inches per minute.

Table F-3.Cyclic Test Load Protocol.
SAC-2Load

Step # Number of
Cycles, n

Peak Deformation, q
(radians)

Modified
SAC

Amplitude
1 6 0.00375 0.75dy

2 6 0.005 1.0dy

3 6 0.0075 1.5dy

4 4 0.01 2dy

5 2 0.015 3dy

6 2 0.02 4dy

7 2 0.03 6dy

8 2 0.04 8dy

9 2 0.05 10dy

10 2 0.06 12dy

11 2 0.07 14dy

12 2 0.08 16dy

13 2 0.09 18dy

14 2 0.10 20dy

15 2 0.11 22dy

16 2 0.12 24dy

17 2 0.13 26dy

18 2 0.14 28dy

19 2 0.15 30dy

20 2 0.16 32dy

Figure F-2.  Modified SAC cyclic test time history with ddy = 0.4 in and 6 in/min stroke rate.
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F7.  SHEAR PANEL PERFORMANCE DOCUMENTATION.  Shear panel performance from both
monotonic and cyclic tests shall be documented in terms of load versus deflection plots (TSF versus
DH).  Cyclic tests plot load versus deflection to define load versus deflection hysteretic envelopes.
Observations of panel performance and failure progression with respect to lateral displacement shall
be documented in a tabular or other format.  Photographs that document these observations shall be
included in the test report.  Test results for each specimen tested shall be summarized as indicated in
Table F-4.  Repeatability of panel performance of a given configuration is critical, so that if only two
cyclic tests are conducted the poorest performance of the two shall form the basis for design.
Therefore special consideration shall be given to large variations in panel performance, especially
failure type or displacement amplitude of each type of failure.  Test procedures and results shall be
documented in a test report.

Table F-4.  Summary of Test Panel Performance.
Test

Specimen
Load Type
(Monotonic
or Cyclic)

Load Rate
(mm/min
or in/min)

Linear Shear
Stiffness

(kN/mm) or
(kips/inch)

Shear Load
at dy

Deflection
(kN or kips)

Shear Deflection
at Ultimate
Shear Load

(mm or inches)

Ultimate
Shear Load
(kN or kips)

F8.  DESIGN GUIDANCE.  The measured load versus deflection data shall be used to define the
design strength and stiffness of the shear panels.  Resistance factors for each loading mechanism
shall be defined that recognizes the variation of the shear panel capacity.  In other words a panel
shear capacity resistance factor, fv, shall reflect the variability of shear capacity of the tested panels.
For example, fv = 0.9 if the strength variability is small and mode and displacement of failures are
consistent.

The following criteria shall be defined from the shear panel cyclic test data:

1. The panel ductility, m , is the ultimate lateral deflection without loss of lateral or vertical load
capacity, du  over yield lateral deflection, dy defined as follows:

y

u

d

d
=m (Eq F-2)

2. The panel overstrength, W5, which is the maximum measured ultimate lateral panel capacity,
Qu over the yield capacity, Qy, defined as follows:

y

u

Q

Q
=W (Eq F-3)

3. The panel redundancy factor, r1 of the individual shear panel tested6. This redundancy can
be seen by comparing shear panel load/deflection data with coupon data, to determine if
overstrength, W is due to strain hardening of the primary load-carrying element or due to the
action of a secondary lateral load-resisting element.  An example of this would be a panel with
diagonal straps acting as the primary element with the columns effectively working to provide a

                                                          
5 This should not be confused with the system overstrength factor, W0 defined in FEMA 302, Section 5.2.2 and Table 5.2.2 or
TI 809-07, Equation C-16.
6 This should not be confused with the reliability factor, r or rx, which is the extent of structural redundancy in the lateral-force
resisting system for an entire story of a building.
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significant moment frame.  In this case the moment frame would provide redundancy for the
shear panel.  If the diagonal straps fail, this moment frame capacity would provide lateral
resistance for the moment from the P-delta effect of the gravity load.  This redundancy is critical
to preventing building collapse for a structure whose lateral load resisting system has failed.  The
panel redundancy factor, r1 is calculated as follows:

p

cp

p

u
1 Q

QQ

Q

Q +
==r (Eq F-4)

Where:
Qp = the portion of the shear panel ultimate lateral capacity carried by the primary lateral load

resisting element including the effects of strain hardening.  For panels with full panel
sheet(s) this contribution will increase with increasing deflection due to a widening of the
panel tension field.  This value can only be reasonably determined by measuring Qc (as
described below) and calculating Qp as the difference between Qu and Qc.

Qc = the portion of shear panel ultimate lateral capacity carried by the columns acting as
moment frames.  For panels with full panel sheet(s) this value can only be obtained by
testing the same exact panels with the full panel sheets removed.  If these tests are not
performed for full panel sheet shear panels, Qc shall be set equal to zero.

4. The width of the cyclic test load/deflection hysteretic envelope.  If the hysteretic envelope is
significantly pinched (no or very little load resistance away from the peak excursions), much less
energy is absorbed by the structural system so that building amplification grows.  Pinched
hysteretic envelopes occur when the primary lateral load-resisting element is stretched, and there
is little redundant capacity from other elements to pick up load, so that little resistance is available
away from the peak excursions of the load cycles.  Panels with significantly pinched hysteretic
envelopes, can experience high acceleration impact loading because the building will be free to
sway with little resistance and then suddenly snap the lateral load-resisting element when another
peak excursion is reached.  This high acceleration snap can cause brittle failures.  A shear panel
with a great deal of redundancy within the panel, r1 will tend to have a wide hysteretic envelope.

Table F-5 defines the acceptance criteria in terms of m, W and r1 based on data measured in the
cyclic panel tests, as defined by Equations F-2 through F-4.

Table F-5.  Acceptance Criteria for Shear Panels
based on mm, WW and rr1.

Criteria Acceptance Requirement
Panel Ductility, m ³ 10

Panel Overstrength, W ³ 1.3
Panel Redundancy factor, r1 ³ 1.0
Hysteretic Envelope Width Not Required

Values for the system response modification factor, R system overstrength factor, W0 and deflection
amplification factor, Cd, are defined in Table F-6.  These values are used in the seismic design
guidance defined in TI 809-04 and FEMA 302.  Exceptions to this criteria shall require Corps of
Engineers Headquarters (CEMP-ET) approval.

Table F-6.  Values for R, WW0 and Cd.
Factor Value

System Response Modification Factor, R 4
System Overstrength Factor, W0 2

Deflection Amplification Factor, Cd 3.5
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APPENDIX G

MASONRY VENEER / STEEL STUD  WALLS
(NONBEARING CONSTRUCTION)

List of Drawings
Title Drawing No

Wall Anchors
Wire Anchors .................................................................................... 1.1
Wire Anchor, Details.......................................................................... 1.2
Wire Anchor with Continuous Brick Joint Reinforcement.................... 1.3
Pintle Anchor .................................................................................... 1.4

Wall Sections
Typical Brick Veneer and Steel Stud Panel Wall ................................ 2.1
Adjustable Wall Anchor Detail ........................................................... 2.2
Masonry Veneer Steel Stud Panel Wall

Plan View ............................................................................. 2.3.1
Foundation Wall Section ....................................................... 2.3.2
Structural Steel Section ........................................................ 2.3.3
Reinforced Concrete Section ................................................ 2.3.4
Steel Joist Section ................................................................ 2.3.5

Slip Joint Details
Typical Single Track ............................................................. 3.1
Typical Double Track ............................................................ 3.2
Parapet Slide Clip................................................................. 3.3

Bottom Connection
Track Anchored to Concrete ................................................. 4.1

Expansion Joints
Brick or CMU Veneer Joint.................................................... 5.1
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Figure G-1.  Wire Anchors
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Figure G-2. Wire Anchor, Details
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Figure G-3. Wire Anchor  with Continuous Brick Joint Reinforcement
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Figure G-4. Pintle Anchor
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Figure G-5.  Typical Brick Veneer and Steel Stud Panel Wall
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Figure G-6.  Adjustable Wall Anchor Detail
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Figure G-7.  Masonry Veneer Steel Stud Panel Wall, Plan View
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Figure G-8.  Masonry Veneer Steel Stud Panel Wall, Foundation Wall Section
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Figure G-9.  Masonry Veneer Steel Stud Panel Wall, Structural Steel Section
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Figure G-10.   Masonry Veneer Steel Stud Panel Wall, Reinforced Concrete Section
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Figure  G-11.  Masonry Veneer Steel Stud Panel Wall, Steel Joist Section
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Figure G-12.  Slip Joint Details, Typical Single Track
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Figure G-13.  Slip Joint Details, Typical Double Track
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Figure G-14.  Slip Joint Details, Parapet Slide Clip
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Figure G-15.  Bottom Connection, Track Anchored to Concrete
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Figure G-16.  Expansion Joints, Brick or CMU Veneer Joint
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APPENDIX H

Metric Conversion Data Sheet

Quantity Unit    Symbol Prefix Symbol Order of Magnitude
length meter    m mega M 106

mass kilogram kg kilo k 103

time second s milli m 10-3

force newton N= kg m/s2

stress pascal Pa= N/m2

energy joule J= N-m

METRIC CONVERSIONS

Multiply      by to obtain

AREA AND VOLUME
ft2 0.092 903 m2

ft3 0.028 136 847 m3

gal 0.003 785 412 m3

in2 645.160 000 mm2

SECTION MODULUS
in3 16 387.064 mm3

MOMENT OF INERTIA
in4 416 231.430 mm4

LENGTH
foot (ft) 304.800 millimeters (mm)
inch (in) 25.400 millimeters (mm)

MASS
kg (force/mass) 9.806 650 N
pound-mass (lbm) 0.453 592 kilogram (kg, mass)

FORCE
pound-force (lbf) 4.448 222 N
plf 14.593 903 N/m

TORQUE
lb-in 0.112 985 N-m
lb-ft 1.355 818 N-m

Multiply      by to obtain

PRESSURE AND DENSITY
foot of water 2.988 980 kPa
g/cm3 62.427 900 pcf
g/cm3 9.806 650 kN/m3

kg/cm2 98.066 500 kPa
ksi 6.894 757 MPa, N/mm2

pcf 16.018 460 kg/m3

pcf 157.087 616 N/m3

psf 47.880 260 Pa
psi 6.894 757 kPa
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APPENDIX I

STANDARD DRAWINGS COLD-FORMED STEEL

This Appendix links designers to a standard CADD library of Cold-Formed Steel details in
Intergraph format that are for general information only.  These details are available to designers
for use in Military design projects.  They were developed originally by AISI for residential
construction and should be modified according for larger projects.  They include typical; floor,
roof, and wall framing, plans and elevations.  Also included are typical roof truss elevations, and
connection details for floors, walls, openings, and roofs.  Connection details can be fastened
using bolts welds, or screws.  Punch-outs are not shown but are acceptable and vary in size and
configuration based on the manufacturer.  Additional design and detailing is required before this
information can be used in construction documents.  Neither the Corps of Engineers nor AISI is
responsible for the proper use of this information.  Before specifying or using cold-formed material
a competent Structural engineer shall design and check the adequacy of the design and any cold-
formed component used in the design.  Anyone using this information assumes all liability arising
from such use.

Details for moisture protection, thermal insulation, seismic conditions, and high wind conditions
are special requirements that need to be considered in any design using cold-formed steel.
Designers shall use the information from Chapter 4 and Appendix G when designing for moisture
protection and  thermal insulation of steel stud systems.

Standard Detail Drawings for Cold-formed Steel Systems:

Stls 101.pdf:  Schematic

Stls 102.pdf:  Exterior Walls

Stls 103.pdf:  Exterior Walls

Stls 104.pdf:  Interior Framing Detail

Stls 105.pdf:  Roof Member Connections

Stls 106.pdf:  Framing Details for Floor and Wall Openings

Stls 107.pdf: Special Reinforcement Bridging, Blocking, & Miscellaneous

Stls 108.pdf: Special Reinforcement Bridging, Blocking, & Miscellaneous

Stls 109.pdf: Special Reinforcement Bridging, Blocking, & Miscellaneous






















